
Developer Guide for SDK v2

AWS SDK for JavaScript

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.



AWS SDK for JavaScript Developer Guide for SDK v2

AWS SDK for JavaScript: Developer Guide for SDK v2

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service 
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any 
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are 
the property of their respective owners, who may or may not be affiliated with, connected to, or 
sponsored by Amazon.



AWS SDK for JavaScript Developer Guide for SDK v2

Table of Contents

......................................................................................................................................................... ix
What Is the AWS SDK for JavaScript? ............................................................................................ 1

Maintenance and support for SDK major versions ................................................................................ 1
Using the SDK with Node.js ....................................................................................................................... 2
Using the SDK with AWS Cloud9 .............................................................................................................. 2
Using the SDK with AWS Amplify ............................................................................................................ 2
Using the SDK with Web Browsers ........................................................................................................... 2

Common Use Cases ................................................................................................................................ 3
About the Examples ............................................................................................................................... 3

Getting Started ................................................................................................................................ 4
Getting Started in a Browser Script ......................................................................................................... 4

The Scenario ............................................................................................................................................. 4
Step 1: Create an Amazon Cognito Identity Pool ............................................................................ 5
Step 2: Add a Policy to the Created IAM Role .................................................................................. 6
Step 3: Create the HTML Page ............................................................................................................. 7
Step 4: Write the Browser Script ......................................................................................................... 8
Step 5: Run the Sample ........................................................................................................................ 9
Full Sample ............................................................................................................................................ 10
Possible Enhancements ....................................................................................................................... 11

Getting Started in Node.js ....................................................................................................................... 12
The Scenario .......................................................................................................................................... 12
Prerequisite Tasks ................................................................................................................................. 12
Step 1: Install the SDK and Dependencies ...................................................................................... 13
Step 2: Configure Your Credentials ................................................................................................... 13
Step 3: Create the Package JSON for the Project .......................................................................... 14
Step 4: Write the Node.js Code ......................................................................................................... 15
Step 5: Run the Sample ...................................................................................................................... 16

Using AWS Cloud9 with the SDK for JavaScript .......................................................................... 17
Step 1: Set up Your AWS Account to Use AWS Cloud9 ...................................................................... 17
Step 2: Set up Your AWS Cloud9 Development Environment .......................................................... 17
Step 3: Set up the SDK for JavaScript .................................................................................................. 18

To set up the SDK for JavaScript for Node.js ................................................................................. 18
To set up the SDK for JavaScript in the browser ........................................................................... 19

Step 4: Download Example Code ........................................................................................................... 19

iii



AWS SDK for JavaScript Developer Guide for SDK v2

Step 5: Run and Debug Example Code ................................................................................................. 19
Setting Up the SDK for JavaScript ............................................................................................... 20

Prerequisites ................................................................................................................................................ 20
Setting Up an AWS Node.js Environment ........................................................................................ 20
Web Browsers Supported .................................................................................................................... 21

Installing the SDK ...................................................................................................................................... 22
Installing Using Bower ......................................................................................................................... 23

Loading the SDK ........................................................................................................................................ 23
Upgrading From Version 1 ....................................................................................................................... 24

Automatic Conversion of Base64 and Timestamp Types on Input/Output .............................. 24
Moved response.data.RequestId to response.requestId ................................................................ 25
Exposed Wrapper Elements ................................................................................................................ 26
Dropped Client Properties .................................................................................................................. 31

Configuring the SDK for JavaScript ............................................................................................. 32
Using the Global Configuration Object ................................................................................................. 32

Setting Global Configuration ............................................................................................................. 33
Setting Configuration Per Service ..................................................................................................... 35
Immutable Configuration Data .......................................................................................................... 35

Setting the AWS Region ........................................................................................................................... 35
In a Client Class Constructor .............................................................................................................. 36
Using the Global Configuration Object ............................................................................................ 36
Using an Environment Variable ......................................................................................................... 36
Using a Shared Config File ................................................................................................................. 36
Order of Precedence for Setting the Region .................................................................................. 37

Specifying Custom Endpoints .................................................................................................................. 37
Endpoint String Format ....................................................................................................................... 37
Endpoints for the ap-northeast-3 Region ....................................................................................... 38
Endpoints for MediaConvert .............................................................................................................. 38

SDK authentication with AWS ................................................................................................................. 38
Start an AWS access portal session .................................................................................................. 40
More authentication information ...................................................................................................... 40

Setting Credentials .................................................................................................................................... 41
Best Practices for Credentials ............................................................................................................ 41
Setting Credentials in Node.js ............................................................................................................ 42
Setting Credentials in a Web Browser .............................................................................................. 47

Locking API Versions ................................................................................................................................. 57

iv



AWS SDK for JavaScript Developer Guide for SDK v2

Getting API Versions ............................................................................................................................ 57
Node.js Considerations .............................................................................................................................. 58

Using Built-In Node.js Modules .......................................................................................................... 58
Using NPM Packages ............................................................................................................................ 58
Configuring maxSockets in Node.js .................................................................................................. 59
Reusing Connections with Keep-Alive in Node.js ........................................................................... 60
Configuring Proxies for Node.js ......................................................................................................... 61
Registering Certificate Bundles in Node.js ...................................................................................... 62

Browser Script Considerations ................................................................................................................. 62
Building the SDK for Browsers .......................................................................................................... 63
Cross-Origin Resource Sharing (CORS) ............................................................................................. 66

Bundling with Webpack ............................................................................................................................ 70
Installing Webpack ............................................................................................................................... 70
Configuring Webpack ........................................................................................................................... 71
Running Webpack ................................................................................................................................. 72
Using the Webpack Bundle ................................................................................................................ 73
Importing Individual Services ............................................................................................................. 73
Bundling for Node.js ............................................................................................................................ 74

Working with Services .................................................................................................................. 76
Creating and Calling Service Objects ..................................................................................................... 77

Requiring Individual Services ............................................................................................................. 78
Creating Service Objects ..................................................................................................................... 79
Locking the API Version of a Service Object .................................................................................. 80
Specifying Service Object Parameters ............................................................................................. 80

Logging AWS SDK for JavaScript Calls .................................................................................................. 81
Using a Third-Party Logger ................................................................................................................ 81

Calling Services Asychronously ............................................................................................................... 82
Managing Asychronous Calls .............................................................................................................. 82
Using a Callback Function .................................................................................................................. 83
Using a Request Object Event Listener ............................................................................................ 85
Using async/await ................................................................................................................................. 90
Using Promises ...................................................................................................................................... 91

Using the Response Object ...................................................................................................................... 93
Accessing Data Returned in the Response Object ......................................................................... 93
Paging Through Returned Data ......................................................................................................... 94
Accessing Error Information from a Response Object .................................................................. 95

v



AWS SDK for JavaScript Developer Guide for SDK v2

Accessing the Originating Request Object ...................................................................................... 95
Working with JSON ................................................................................................................................... 95

JSON as Service Object Parameters ................................................................................................. 96
Returning Data as JSON ...................................................................................................................... 97

SDK for JavaScript Code Examples .............................................................................................. 99
Amazon CloudWatch Examples ............................................................................................................... 99

Creating Alarms in Amazon CloudWatch ...................................................................................... 100
Using Alarm Actions in Amazon CloudWatch ............................................................................... 104
Getting Metrics from Amazon CloudWatch .................................................................................. 108
Sending Events to Amazon CloudWatch Events .......................................................................... 111
Using Subscription Filters in Amazon CloudWatch Logs ............................................................ 116

Amazon DynamoDB Examples .............................................................................................................. 121
Creating and Using Tables in DynamoDB ...................................................................................... 122
Reading and Writing A Single Item in DynamoDB ...................................................................... 127
Reading and Writing Items in Batch in DynamoDB ..................................................................... 130
Querying and Scanning a DynamoDB Table ................................................................................. 134
Using the DynamoDB Document Client ........................................................................................ 137

Amazon EC2 Examples ........................................................................................................................... 143
Creating an Amazon EC2 Instance .................................................................................................. 144
Managing Amazon EC2 Instances ................................................................................................... 147
Working with Amazon EC2 Key Pairs ............................................................................................. 153
Using Regions and Availability Zones with Amazon EC2 ........................................................... 156
Working with Security Groups in Amazon EC2 ............................................................................ 158
Using Elastic IP Addresses in Amazon EC2 ................................................................................... 163

MediaConvert Examples ......................................................................................................................... 167
Getting Your Region-Specific Endpoint ......................................................................................... 167
Creating and Managing Jobs ........................................................................................................... 169
Using Job Templates ......................................................................................................................... 177

Amazon S3 Glacier Examples ................................................................................................................ 185
Creating a S3 Glacier Vault .............................................................................................................. 186
Uploading an Archive to S3 Glacier ............................................................................................... 187
Doing a Multipart Upload to S3 Glacier ........................................................................................ 188

AWS IAM Examples .................................................................................................................................. 190
Managing IAM Users .......................................................................................................................... 191
Working with IAM Policies ................................................................................................................ 196
Managing IAM Access Keys ............................................................................................................... 202

vi



AWS SDK for JavaScript Developer Guide for SDK v2

Working with IAM Server Certificates ............................................................................................ 207
Managing IAM Account Aliases ........................................................................................................ 211

Amazon Kinesis Example ........................................................................................................................ 214
Capturing Web Page Scroll Progress with Amazon Kinesis ....................................................... 214

Amazon S3 Examples .............................................................................................................................. 221
Amazon S3 Browser Examples ........................................................................................................ 222
Amazon S3 Node.js Examples .......................................................................................................... 251

Amazon SES Examples ........................................................................................................................... 271
Managing Identities ............................................................................................................................ 272
Working with Email Templates ........................................................................................................ 278
Sending Email Using Amazon SES .................................................................................................. 284
Using IP Address Filters .................................................................................................................... 290
Using Receipt Rules ............................................................................................................................ 294

Amazon SNS Examples ........................................................................................................................... 299
Managing Topics ................................................................................................................................. 300
Publishing Messages to a Topic ...................................................................................................... 306
Managing Subscriptions .................................................................................................................... 308
Sending SMS Messages ..................................................................................................................... 314

Amazon SQS Examples ........................................................................................................................... 320
Using Queues in Amazon SQS ......................................................................................................... 321
Sending and Receiving Messages in Amazon SQS ...................................................................... 325
Managing Visibility Timeout in Amazon SQS ............................................................................... 329
Enabling Long Polling in Amazon SQS .......................................................................................... 331
Using Dead Letter Queues in Amazon SQS .................................................................................. 335

Tutorials ....................................................................................................................................... 338
Tutorial: Setting Up Node.js on an Amazon EC2 Instance ............................................................... 338

Prerequisites ........................................................................................................................................ 338
Procedure .............................................................................................................................................. 338
Creating an Amazon Machine Image ............................................................................................. 340
Related Resources ............................................................................................................................... 340

API Reference and Changelog .................................................................................................... 341
SDK Changelog on GitHub .................................................................................................................... 341

Security ........................................................................................................................................ 342
Data protection ........................................................................................................................................ 342
Identity and Access Management ........................................................................................................ 343

Audience ............................................................................................................................................... 344

vii



AWS SDK for JavaScript Developer Guide for SDK v2

Authenticating with identities ......................................................................................................... 344
Managing access using policies ....................................................................................................... 348
How AWS services work with IAM .................................................................................................. 350
Troubleshooting AWS identity and access .................................................................................... 350

Compliance Validation ............................................................................................................................ 352
Resilience ................................................................................................................................................... 353
Infrastructure Security ............................................................................................................................ 354
Enforcing a minimum version of TLS .................................................................................................. 355

Verify and enforce TLS in Node.js .................................................................................................. 355
Verify and enforce TLS in a browser script ................................................................................... 357

Additional Resources ................................................................................................................... 360
AWS SDKs and Tools Reference Guide ................................................................................................ 360
JavaScript SDK Forum ............................................................................................................................. 360
JavaScript SDK and Developer Guide on GitHub .............................................................................. 360
JavaScript SDK on Gitter ........................................................................................................................ 360

Document History ........................................................................................................................ 361
Document History .................................................................................................................................... 361
Earlier Updates ......................................................................................................................................... 362

viii



AWS SDK for JavaScript Developer Guide for SDK v2

We announced the upcoming end-of-support for AWS SDK for JavaScript v2. We recommend that 
you migrate to AWS SDK for JavaScript v3. For dates, additional details, and information on how to 
migrate, please refer to the linked announcement.

ix

https://aws.amazon.com/blogs/developer/announcing-end-of-support-for-aws-sdk-for-javascript-v2/
https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/


AWS SDK for JavaScript Developer Guide for SDK v2

What Is the AWS SDK for JavaScript?

The AWS SDK for JavaScript provides a JavaScript API for AWS services. You can use the JavaScript 
API to build libraries or applications for Node.js or the browser.

Not all services are immediately available in the SDK. To find out which services are currently 
supported by the AWS SDK for JavaScript, see  https://github.com/aws/aws-sdk-js/blob/master/ 
SERVICES.md. For information about the SDK for JavaScript on GitHub, see Additional Resources.

Maintenance and support for SDK major versions

For information about maintenance and support for SDK major versions and their underlying 
dependencies, see the following in the AWS SDKs and Tools Reference Guide:

• AWS SDKs and tools maintenance policy

• AWS SDKs and tools version support matrix

Maintenance and support for SDK major versions 1

https://nodejs.org/en/
https://github.com/aws/aws-sdk-js/blob/master/SERVICES.md
https://github.com/aws/aws-sdk-js/blob/master/SERVICES.md
https://docs.aws.amazon.com/sdkref/latest/guide/overview.html
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html
https://docs.aws.amazon.com/sdkref/latest/guide/version-support-matrix.html


AWS SDK for JavaScript Developer Guide for SDK v2

Using the SDK with Node.js

Node.js is a cross-platform runtime for running server-side JavaScript applications. You can set 
up Node.js on an Amazon EC2 instance to run on a server. You can also use Node.js to write on-
demand AWS Lambda functions.

Using the SDK for Node.js differs from the way in which you use it for JavaScript in a web 
browser. The difference comes from the way in which you load the SDK and in how you obtain the 
credentials needed to access specific web services. When use of particular APIs differs between 
Node.js and the browser, those differences will be called out.

Using the SDK with AWS Cloud9

You can also develop Node.js applications using the SDK for JavaScript in the AWS Cloud9 IDE. 
For a sample of how to use AWS Cloud9 for Node.js development, see Node.js Sample for AWS 
Cloud9 in the AWS Cloud9 User Guide. For more information on using AWS Cloud9 with the SDK for 
JavaScript, see Using AWS Cloud9 with the AWS SDK for JavaScript.

Using the SDK with AWS Amplify

For browser-based web, mobile, and hybrid apps, you can also use the AWS Amplify Library on 
GitHub, which extends the SDK for JavaScript, providing a declarative interface.

Note

Frameworks such as AWS Amplify might not offer the same browser support as the SDK for 
JavaScript. Check a framework's documentation for details.

Using the SDK with Web Browsers

All major web browsers support execution of JavaScript. JavaScript code that is running in a web 
browser is often called client-side JavaScript.

Using the SDK for JavaScript in a web browser differs from the way in which you use it for 
Node.js. The difference comes from the way in which you load the SDK and in how you obtain the 
credentials needed to access specific web services. When use of particular APIs differs between 
Node.js and the browser, those differences will be called out.

Using the SDK with Node.js 2

https://docs.aws.amazon.com/cloud9/latest/user-guide/sample-nodejs.html
https://docs.aws.amazon.com/cloud9/latest/user-guide/sample-nodejs.html
https://github.com/aws/aws-amplify
https://github.com/aws/aws-amplify


AWS SDK for JavaScript Developer Guide for SDK v2

For a list of browsers that are supported by the AWS SDK for JavaScript, see Web Browsers 
Supported.

Common Use Cases

Using the SDK for JavaScript in browser scripts makes it possible to realize a number of compelling 
use cases. Here are several ideas for things you can build in a browser application by using the SDK 
for JavaScript to access various web services.

• Build a custom console to AWS services in which you access and combine features across Regions 
and services to best meet your organizational or project needs.

• Use Amazon Cognito Identity to enable authenticated user access to your browser applications 
and websites, including use of third-party authentication from Facebook and others.

• Use Amazon Kinesis to process click streams or other marketing data in real time.

• Use Amazon DynamoDB for serverless data persistence such as individual user preferences for 
website visitors or application users.

• Use AWS Lambda to encapsulate proprietary logic that you can invoke from browser scripts 
without downloading and revealing your intellectual property to users.

About the Examples

You can browse the SDK for JavaScript examples in the AWS Code Example Library.

Common Use Cases 3

https://docs.aws.amazon.com/code-library/latest/ug/javascript_2_code_examples.html


AWS SDK for JavaScript Developer Guide for SDK v2

Getting Started with the AWS SDK for JavaScript

The AWS SDK for JavaScript provides access to web services in either browser scripts or Node.js. 
This section has two getting started exercises that show you how to work with the SDK for 
JavaScript in each of these JavaScript environments.

You can also develop Node.js applications using the SDK for JavaScript in the AWS Cloud9 IDE. For 
a sample of how to use AWS Cloud9 for Node.js development, see Node.js Sample for AWS Cloud9
in the AWS Cloud9 User Guide.

Topics

• Getting Started in a Browser Script

• Getting Started in Node.js

Getting Started in a Browser Script

This browser script example shows you:

• How to access AWS services from a browser script using Amazon Cognito Identity.

• How to turn text into synthesized speech using Amazon Polly.

• How to use a presigner object to create a presigned URL.

The Scenario

Amazon Polly is a cloud service that converts text into lifelike speech. You can use Amazon Polly to 
develop applications that increase engagement and accessibility. Amazon Polly supports multiple 
languages and includes a variety of lifelike voices. For more information about Amazon Polly, see 
the Amazon Polly Developer Guide.

The example shows how to set up and run a simple browser script that takes text you enter, sends 
that text to Amazon Polly, and then returns the URL of the synthesized audio of the text for you to 
play. The browser script uses Amazon Cognito Identity to provide credentials needed to access AWS 

Getting Started in a Browser Script 4

https://docs.aws.amazon.com/cloud9/latest/user-guide/sample-nodejs.html
https://docs.aws.amazon.com/polly/latest/dg/


AWS SDK for JavaScript Developer Guide for SDK v2

services. You will see the basic patterns for loading and using the SDK for JavaScript in browser 
scripts.

Note

Playback of the synthesized speech in this example depends on running in a browser that 
supports HTML 5 audio.

The browser script uses the SDK for JavaScript to synthesize text by using these APIs:

• AWS.CognitoIdentityCredentials constructor

• AWS.Polly.Presigner constructor

• getSynthesizeSpeechUrl

Step 1: Create an Amazon Cognito Identity Pool

In this exercise, you create and use an Amazon Cognito identity pool to provide unauthenticated 
access to your browser script for the Amazon Polly service. Creating an identity pool also creates 
two IAM roles, one to support users authenticated by an identity provider and the other to support 
unauthenticated guest users.

In this exercise, we will only work with the unauthenticated user role to keep the task focused. You 
can integrate support for an identity provider and authenticated users later. For more information 
about adding a Amazon Cognito identity pool, see Tutorial: Creating an identity pool in the Amazon 
Cognito Developer Guide.

Step 1: Create an Amazon Cognito Identity Pool 5

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/CognitoIdentityCredentials.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/Polly/Presigner.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/Polly/Presigner.html#getSynthesizeSpeechUrl-property
https://docs.aws.amazon.com/cognito/latest/developerguide/tutorial-create-identity-pool.html


AWS SDK for JavaScript Developer Guide for SDK v2

To create an Amazon Cognito identity pool

1. Sign in to the AWS Management Console and open the Amazon Cognito console at https:// 
console.aws.amazon.com/cognito/.

2. In the left navigation pane, choose Identity pools.

3. Choose Create identity pool.

4. In Configure identity pool trust, choose Guest access for user authentication.

5. In Configure permissions, choose Create a new IAM role and enter a name (for example,
getStartedRole) in the IAM role name.

6. In Configure properties, enter a name (for example, getStartedPool) in Identity pool name.

7. In Review and create, confirm the selections that you made for your new identity pool. Select
Edit to return to the wizard and change any settings. When you're done, select Create identity 
pool.

8. Note the Identity pool ID and the Region of the newly created Amazon Cognito identity 
pool. You need these values to replace IDENTITY_POOL_ID and REGION in Step 4: Write the 
Browser Script.

After you create your Amazon Cognito identity pool, you're ready to add permissions for Amazon 
Polly that are needed by your browser script.

Step 2: Add a Policy to the Created IAM Role

To enable browser script access to Amazon Polly for speech synthesis, use the unauthenticated IAM 
role created for your Amazon Cognito identity pool. This requires you to add an IAM policy to the 
role. For more information about modifying IAM roles, see Modifying a role permissions policy in 
the IAM User Guide.

To add an Amazon Polly policy to the IAM role associated with unauthenticated users

1. Sign in to the AWS Management Console and open the IAM console at https:// 
console.aws.amazon.com/iam/.

2. In the left navigation pane, choose Roles.

3. Choose the name of the role that you want to modify (for example, getStartedRole), and then 
choose the Permissions tab.

4. Choose Add permissions and then choose Attach policies.

Step 2: Add a Policy to the Created IAM Role 6

https://console.aws.amazon.com/cognito/
https://console.aws.amazon.com/cognito/
https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-managingrole-editing-console.html#roles-modify_permissions-policy
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/


AWS SDK for JavaScript Developer Guide for SDK v2

5. In the Add permissions page for this role, find and then select the check box for
AmazonPollyReadOnly.

Note

You can use this process to enable access to any AWS service.

6. Choose Add permissions.

After you create your Amazon Cognito identity pool and add permissions for Amazon Polly to your 
IAM role for unauthenticated users, you are ready to build the webpage and browser script.

Step 3: Create the HTML Page

The sample app consists of a single HTML page that contains the user interface and browser script. 
To begin, create an HTML document and copy the following contents into it. The page includes an 
input field and button, an <audio> element to play the synthesized speech, and a <p> element to 
display messages. (Note that the full example is shown at the bottom of this page.)

For more information on the <audio> element, see audio.

<!DOCTYPE html>
<html> 
  <head> 
    <meta charset="UTF-8"> 
    <title>AWS SDK for JavaScript - Browser Getting Started Application</title> 
  </head> 

  <body> 
    <div id="textToSynth"> 
      <input autofocus size="23" type="text" id="textEntry" value="It's very good to 
 meet you."/> 
      <button class="btn default" onClick="speakText()">Synthesize</button> 
      <p id="result">Enter text above then click Synthesize</p> 
    </div> 
    <audio id="audioPlayback" controls> 
      <source id="audioSource" type="audio/mp3" src=""> 
    </audio> 
    <!-- (script elements go here) --> 
 </body>
</html>

Step 3: Create the HTML Page 7

https://www.w3schools.com/tags/tag_audio.asp


AWS SDK for JavaScript Developer Guide for SDK v2

Save the HTML file, naming it polly.html. After you have created the user interface for the 
application, you're ready to add the browser script code that runs the application.

Step 4: Write the Browser Script

The first thing to do when creating the browser script is to include the SDK for JavaScript 
by adding a <script> element after the <audio> element in the page. To find the current 
SDK_VERSION_NUMBER, see the API Reference for the SDK for JavaScript at AWS SDK for 
JavaScript API Reference Guide.

<script src="https://sdk.amazonaws.com/js/aws-sdk-SDK_VERSION_NUMBER.min.js"></script>

Then add a new <script type="text/javascript"> element after the SDK entry. You'll add 
the browser script to this element. Set the AWS Region and credentials for the SDK. Next, create a 
function named speakText() that will be invoked as an event handler by the button.

To synthesize speech with Amazon Polly, you must provide a variety of parameters including the 
sound format of the output, the sampling rate, the ID of the voice to use, and the text to play back. 
When you initially create the parameters, set the Text: parameter to an empty string; the Text:
parameter will be set to the value you retrieve from the <input> element in the webpage. Replace
IDENTITY_POOL_ID and REGION in the following code with values noted in Step 1: Create an 
Amazon Cognito Identity Pool.

    <script type="text/javascript"> 

        // Initialize the Amazon Cognito credentials provider 
        AWS.config.region = 'REGION'; 
        AWS.config.credentials = new AWS.CognitoIdentityCredentials({IdentityPoolId: 
 'IDENTITY_POOL_ID'}); 

        // Function invoked by button click 
        function speakText() { 
            // Create the JSON parameters for getSynthesizeSpeechUrl 
            var speechParams = { 
                OutputFormat: "mp3", 
                SampleRate: "16000", 
                Text: "", 
                TextType: "text", 
                VoiceId: "Matthew" 
            }; 

Step 4: Write the Browser Script 8

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/


AWS SDK for JavaScript Developer Guide for SDK v2

            speechParams.Text = document.getElementById("textEntry").value;

Amazon Polly returns synthesized speech as an audio stream. The easiest way to play that audio in 
a browser is to have Amazon Polly make the audio available at a presigned URL you can then set as 
the src attribute of the <audio> element in the webpage.

Create a new AWS.Polly service object. Then create the AWS.Polly.Presigner object you'll use 
to create the presigned URL from which the synthesized speech audio can be retrieved. You must 
pass the speech parameters that you defined as well as the AWS.Polly service object that you 
created to the AWS.Polly.Presigner constructor.

After you create the presigner object, call the getSynthesizeSpeechUrl method of that object, 
passing the speech parameters. If successful, this method returns the URL of the synthesized 
speech, which you then assign to the <audio> element for playback.

            // Create the Polly service object and presigner object 
            var polly = new AWS.Polly({apiVersion: '2016-06-10'}); 
            var signer = new AWS.Polly.Presigner(speechParams, polly) 

            // Create presigned URL of synthesized speech file 
            signer.getSynthesizeSpeechUrl(speechParams, function(error, url) { 
            if (error) { 
                document.getElementById('result').innerHTML = error; 
            } else { 
                document.getElementById('audioSource').src = url; 
                document.getElementById('audioPlayback').load(); 
                document.getElementById('result').innerHTML = "Speech ready to play."; 
            } 
          }); 
        } 
    </script>

Step 5: Run the Sample

To run the sample app, load polly.html into a web browser. This is what the browser 
presentation should resemble.

Step 5: Run the Sample 9



AWS SDK for JavaScript Developer Guide for SDK v2

Enter a phrase you want turned to speech in the input box, then choose Synthesize. When the 
audio is ready to play, a message appears. Use the audio player controls to hear the synthesized 
speech.

Full Sample

Here is the full HTML page with the browser script. It's also available here on GitHub.

<!DOCTYPE html>
<html> 
  <head> 
    <meta charset="UTF-8"> 
    <title>AWS SDK for JavaScript - Browser Getting Started Application</title> 
  </head> 

  <body> 
    <div id="textToSynth"> 
      <input autofocus size="23" type="text" id="textEntry" value="It's very good to 
 meet you."/> 
      <button class="btn default" onClick="speakText()">Synthesize</button> 
      <p id="result">Enter text above then click Synthesize</p> 
    </div> 
    <audio id="audioPlayback" controls> 
      <source id="audioSource" type="audio/mp3" src=""> 
    </audio> 
    <script src="https://sdk.amazonaws.com/js/aws-sdk-2.410.0.min.js"></script> 
    <script type="text/javascript"> 

        // Initialize the Amazon Cognito credentials provider 
        AWS.config.region = 'REGION'; 
        AWS.config.credentials = new AWS.CognitoIdentityCredentials({IdentityPoolId: 
 'IDENTITY_POOL_ID'}); 

        // Function invoked by button click 
        function speakText() { 

Full Sample 10

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code//browserstart/polly.html


AWS SDK for JavaScript Developer Guide for SDK v2

            // Create the JSON parameters for getSynthesizeSpeechUrl 
            var speechParams = { 
                OutputFormat: "mp3", 
                SampleRate: "16000", 
                Text: "", 
                TextType: "text", 
                VoiceId: "Matthew" 
            }; 
            speechParams.Text = document.getElementById("textEntry").value; 

            // Create the Polly service object and presigner object 
            var polly = new AWS.Polly({apiVersion: '2016-06-10'}); 
            var signer = new AWS.Polly.Presigner(speechParams, polly) 

            // Create presigned URL of synthesized speech file 
            signer.getSynthesizeSpeechUrl(speechParams, function(error, url) { 
            if (error) { 
                document.getElementById('result').innerHTML = error; 
            } else { 
                document.getElementById('audioSource').src = url; 
                document.getElementById('audioPlayback').load(); 
                document.getElementById('result').innerHTML = "Speech ready to play."; 
            } 
          }); 
        } 
    </script> 
  </body>
</html>

Possible Enhancements

Here are variations on this application you can use to further explore using the SDK for JavaScript 
in a browser script.

• Experiment with other sound output formats.

• Add the option to select any of the various voices provided by Amazon Polly.

• Integrate an identity provider like Facebook or Amazon to use with the authenticated IAM role.

Possible Enhancements 11



AWS SDK for JavaScript Developer Guide for SDK v2

Getting Started in Node.js

This Node.js code example shows:

• How to create the package.json manifest for your project.

• How to install and include the modules that your project uses.

• How to create an Amazon Simple Storage Service (Amazon S3) service object from the AWS.S3
client class.

• How to create an Amazon S3 bucket and upload an object to that bucket.

The Scenario

The example shows how to set up and run a simple Node.js module that creates an Amazon S3 
bucket, then adds a text object to it.

Because bucket names in Amazon S3 must be globally unique, this example includes a third-party 
Node.js module that generates a unique ID value that you can incorporate into the bucket name. 
This additional module is named uuid.

Prerequisite Tasks

To set up and run this example, you must first complete these tasks:

• Create a working directory for developing your Node.js module. Name this directory
awsnodesample. Note that the directory must be created in a location that can be updated by 
applications. For example, in Windows, do not create the directory under "C:\Program Files".

• Install Node.js. For more information, see the Node.js website. You can find downloads of the 
current and LTS versions of Node.js for a variety of operating systems at https://nodejs.org/en/ 
download/current/.

Contents

• Step 1: Install the SDK and Dependencies

Getting Started in Node.js 12

https://nodejs.org
https://nodejs.org/en/download/current/
https://nodejs.org/en/download/current/


AWS SDK for JavaScript Developer Guide for SDK v2

• Step 2: Configure Your Credentials

• Step 3: Create the Package JSON for the Project

• Step 4: Write the Node.js Code

• Step 5: Run the Sample

Step 1: Install the SDK and Dependencies

You install the SDK for JavaScript package using npm (the Node.js package manager).

From the awsnodesample directory in the package, type the following at the command line.

npm install aws-sdk

This command installs the SDK for JavaScript in your project, and updates package.json to list 
the SDK as a project dependency. You can find information about this package by searching for 
"aws-sdk" on the npm website.

Next, install the uuid module to the project by typing the following at the command line, which 
installs the module and updates package.json. For more information about uuid, see the 
module's page at https://www.npmjs.com/package/uuid.

npm install uuid

These packages and their associated code are installed in the node_modules subdirectory of your 
project.

For more information on installing Node.js packages, see Downloading and installing packages 
locally and Creating Node.js Modules on the npm (Node.js package manager) website. For 
information about downloading and installing the AWS SDK for JavaScript, see Installing the SDK 
for JavaScript.

Step 2: Configure Your Credentials

You need to provide credentials to AWS so that only your account and its resources are accessed by 
the SDK. For more information about obtaining your account credentials, see SDK authentication 
with AWS.

Step 1: Install the SDK and Dependencies 13

https://www.npmjs.com
https://www.npmjs.com
https://www.npmjs.com/package/uuid
https://docs.npmjs.com/getting-started/installing-npm-packages-locally
https://docs.npmjs.com/getting-started/installing-npm-packages-locally
https://docs.npmjs.com/getting-started/creating-node-modules
https://www.npmjs.com


AWS SDK for JavaScript Developer Guide for SDK v2

To hold this information, we recommend you create a shared credentials file. To learn how, see
Loading Credentials in Node.js from the Shared Credentials File. Your credentials file should 
resemble the following example.

[default]
aws_access_key_id = YOUR_ACCESS_KEY_ID
aws_secret_access_key = YOUR_SECRET_ACCESS_KEY

You can determine whether you have set your credentials correctly by executing the following code 
with Node.js:

var AWS = require("aws-sdk");

AWS.config.getCredentials(function(err) { 
  if (err) console.log(err.stack); 
  // credentials not loaded 
  else { 
    console.log("Access key:", AWS.config.credentials.accessKeyId); 
  }
});

Similarly, if you have set your region correctly in your config file, you can display that value by 
setting the AWS_SDK_LOAD_CONFIG environment variable to any value and using the following 
code:

var AWS = require("aws-sdk");

console.log("Region: ", AWS.config.region);

Step 3: Create the Package JSON for the Project

After you create the awsnodesample project directory, you create and add a package.json file 
for holding the metadata for your Node.js project. For details about using package.json in a 
Node.js project, see Creating a package.json file.

In the project directory, create a new file named package.json. Then add this JSON to the file.

{ 
  "dependencies": {}, 
  "name": "aws-nodejs-sample", 

Step 3: Create the Package JSON for the Project 14

https://docs.npmjs.com/creating-a-package-json-file


AWS SDK for JavaScript Developer Guide for SDK v2

  "description": "A simple Node.js application illustrating usage of the SDK for 
 JavaScript.", 
  "version": "1.0.1", 
  "main": "sample.js", 
  "devDependencies": {}, 
  "scripts": { 
    "test": "echo \"Error: no test specified\" && exit 1" 
  }, 
  "author": "NAME", 
  "license": "ISC"
}

Save the file. As you install the modules you need, the dependencies portion of the file will be 
completed. You can find a JSON file that shows an example of these dependencies here on GitHub.

Step 4: Write the Node.js Code

Create a new file named sample.js to contain the example code. Begin by adding the require
function calls to include the SDK for JavaScript and uuid modules so that they are available for 
you to use.

Build a unique bucket name that is used to create an Amazon S3 bucket by appending a unique ID 
value to a recognizable prefix, in this case 'node-sdk-sample-'. You generate the unique ID by 
calling the uuid module. Then create a name for the Key parameter used to upload an object to 
the bucket.

Create a promise object to call the createBucket method of the AWS.S3 service object. On a 
successful response, create the parameters needed to upload text to the newly created bucket. 
Using another promise, call the putObject method to upload the text object to the bucket.

// Load the SDK and UUID
var AWS = require("aws-sdk");
var uuid = require("uuid");

// Create unique bucket name
var bucketName = "node-sdk-sample-" + uuid.v4();
// Create name for uploaded object key
var keyName = "hello_world.txt";

// Create a promise on S3 service object
var bucketPromise = new AWS.S3({ apiVersion: "2006-03-01" }) 

Step 4: Write the Node.js Code 15

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/nodegetstarted/example_package.json


AWS SDK for JavaScript Developer Guide for SDK v2

  .createBucket({ Bucket: bucketName }) 
  .promise();

// Handle promise fulfilled/rejected states
bucketPromise 
  .then(function (data) { 
    // Create params for putObject call 
    var objectParams = { 
      Bucket: bucketName, 
      Key: keyName, 
      Body: "Hello World!", 
    }; 
    // Create object upload promise 
    var uploadPromise = new AWS.S3({ apiVersion: "2006-03-01" }) 
      .putObject(objectParams) 
      .promise(); 
    uploadPromise.then(function (data) { 
      console.log( 
        "Successfully uploaded data to " + bucketName + "/" + keyName 
      ); 
    }); 
  }) 
  .catch(function (err) { 
    console.error(err, err.stack); 
  });

This sample code can be found here on GitHub.

Step 5: Run the Sample

Type the following command to run the sample.

node sample.js

If the upload is successful, you'll see a confirmation message at the command line. You can also 
find the bucket and the uploaded text object in the Amazon S3 console.

Step 5: Run the Sample 16

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/nodegetstarted/sample.js
https://console.aws.amazon.com/s3/


AWS SDK for JavaScript Developer Guide for SDK v2

Using AWS Cloud9 with the AWS SDK for JavaScript

You can use AWS Cloud9 with the AWS SDK for JavaScript to write and run your JavaScript in 
the browser code —as well as write, run, and debug your Node.js code—using just a browser. 
AWS Cloud9 includes tools such as a code editor and terminal, plus a debugger for Node.js code. 
Because the AWS Cloud9 IDE is cloud based, you can work on your projects from your office, home, 
or anywhere using an internet-connected machine. For general information about AWS Cloud9, see 
the AWS Cloud9 User Guide.

Follow these steps to set up AWS Cloud9 with the SDK for JavaScript:

Contents

• Step 1: Set up Your AWS Account to Use AWS Cloud9

• Step 2: Set up Your AWS Cloud9 Development Environment

• Step 3: Set up the SDK for JavaScript

• To set up the SDK for JavaScript for Node.js

• To set up the SDK for JavaScript in the browser

• Step 4: Download Example Code

• Step 5: Run and Debug Example Code

Step 1: Set up Your AWS Account to Use AWS Cloud9

Start to use AWS Cloud9 by signing in to the AWS Cloud9 console as an AWS Identity and Access 
Management (IAM) entity (for example, an IAM user) who has access permissions for AWS Cloud9 in 
your AWS account.

To set up an IAM entity in your AWS account to access AWS Cloud9, and to sign in to the AWS 
Cloud9 console, see Team Setup for AWS Cloud9 in the AWS Cloud9 User Guide.

Step 2: Set up Your AWS Cloud9 Development Environment

After you sign in to the AWS Cloud9 console, use the console to create an AWS Cloud9 
development environment. After you create the environment, AWS Cloud9 opens the IDE for that 
environment.

Step 1: Set up Your AWS Account to Use AWS Cloud9 17

https://docs.aws.amazon.com/cloud9/latest/user-guide/
https://docs.aws.amazon.com/cloud9/latest/user-guide/setup.html


AWS SDK for JavaScript Developer Guide for SDK v2

See Creating an Environment in AWS Cloud9 in the AWS Cloud9 User Guide for details.

Note

As you create your environment in the console for the first time, we recommend that you 
choose the option to Create a new instance for environment (EC2). This option tells AWS 
Cloud9 to create an environment, launch an Amazon EC2 instance, and then connect the 
new instance to the new environment. This is the fastest way to begin using AWS Cloud9.

Step 3: Set up the SDK for JavaScript

After AWS Cloud9 opens the IDE for your development environment, follow one or both of the 
following procedures to use the IDE to set up the SDK for JavaScript in your environment.

To set up the SDK for JavaScript for Node.js

1. If the terminal isn't already open in the IDE, open it. To do this, on the menu bar in the IDE, 
choose Window, New Terminal.

2. Run the following command to use npm to install the SDK for JavaScript.

npm install aws-sdk

If the IDE can't find npm, run the following commands, one at a time in the following order, 
to install npm. (These commands assume you chose the option to Create a new instance for 
environment (EC2), earlier in this topic.)

Warning

AWS does not control the following code. Before you run it, be sure to verify its 
authenticity and integrity. More information about this code can be found in the nvm
GitHub repository.

curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.34.0/install.sh | bash # 
 Download and install Node Version Manager (nvm).
. ~/.bashrc                                                                     # 
 Activate nvm.

Step 3: Set up the SDK for JavaScript 18

https://docs.aws.amazon.com/cloud9/latest/user-guide/create-environment.html
https://github.com/nvm-sh/nvm/blob/master/README.md


AWS SDK for JavaScript Developer Guide for SDK v2

nvm install node                                                                # 
 Use nvm to install npm (and Node.js at the same time).

To set up the SDK for JavaScript in the browser

You don't have to install the SDK for JavaScript to use it in browser scripts. You can load the hosted 
SDK for JavaScript package directly from AWS with a script in your HTML pages.

You can download minified and non-minified distributable versions of the current SDK for 
JavaScript from GitHub at https://github.com/aws/aws-sdk-js/tree/master/dist.

Step 4: Download Example Code

Use the terminal you opened in the previous step to download example code for the SDK for 
JavaScript into the AWS Cloud9 development environment. (If the terminal isn't already open in 
the IDE, open it by choosing Window, New Terminal on the menu bar in the IDE.)

To download the example code, run the following command. This command downloads a copy of 
all of the code examples used in the official AWS SDK documentation into your environment's root 
directory.

git clone https://github.com/awsdocs/aws-doc-sdk-examples.git

To find code examples for the SDK for JavaScript, use the Environment window to open the
ENVIRONMENT_NAME\aws-doc-sdk-examples\javascript\example_code, where
ENVIRONMENT_NAME is the name of your AWS Cloud9 development environment.

To learn how to work with these and other code examples, see SDK for JavaScript Code Examples.

Step 5: Run and Debug Example Code

To run code in your AWS Cloud9 development environment, see Run Your Code in the AWS Cloud9 
User Guide.

To debug Node.js code, see Debug Your Code in the AWS Cloud9 User Guide.

To set up the SDK for JavaScript in the browser 19

https://github.com/aws/aws-sdk-js/tree/master/dist
https://docs.aws.amazon.com/sdk-for-javascript/latest/developer-guide/sdk-code-samples.html
https://docs.aws.amazon.com/cloud9/latest/user-guide/build-run-debug.html#build-run-debug-run
https://docs.aws.amazon.com/cloud9/latest/user-guide/build-run-debug.html#build-run-debug-debug


AWS SDK for JavaScript Developer Guide for SDK v2

Setting Up the SDK for JavaScript

The topics in this section explain how to install the SDK for JavaScript for use in web browsers and 
with Node.js. It also shows how to load the SDK so you can access the web services supported by 
the SDK.

Note

React Native developers should use AWS Amplify to create new projects on AWS. See the
aws-sdk-react-native archive for details.

Topics

• Prerequisites

• Installing the SDK for JavaScript

• Loading the SDK for JavaScript

• Upgrading the SDK for JavaScript from Version 1

Prerequisites

Before you use the AWS SDK for JavaScript, determine whether your code needs to run in Node.js 
or web browsers. After that, do the following:

• For Node.js, install Node.js on your servers if it is not already installed.

• For web browsers, identify the browser versions you need to support.

Topics

• Setting Up an AWS Node.js Environment

• Web Browsers Supported

Setting Up an AWS Node.js Environment

To set up an AWS Node.js environment in which you can run your application, use any of the 
following methods:

Prerequisites 20

https://github.com/amazon-archives/aws-sdk-react-native


AWS SDK for JavaScript Developer Guide for SDK v2

• Choose an Amazon Machine Image (AMI) with Node.js pre-installed and create an Amazon EC2 
instance using that AMI. When creating your Amazon EC2 instance, choose your AMI from the 
AWS Marketplace. Search the AWS Marketplace for Node.js and choose an AMI option that 
includes a version of Node.js (32-bit or 64-bit) pre-installed.

• Create an Amazon EC2 instance and install Node.js on it. For more information about how to 
install Node.js on an Amazon Linux instance, see Tutorial: Setting Up Node.js on an Amazon EC2 
Instance.

• Create a serverless environment using AWS Lambda to run Node.js as a Lambda function. For 
more information about using Node.js within a Lambda function, see Programming Model 
(Node.js) in the AWS Lambda Developer Guide.

• Deploy your Node.js application to AWS Elastic Beanstalk. For more information on using Node.js 
with Elastic Beanstalk, see Deploying Node.js Applications to AWS Elastic Beanstalk in the AWS 
Elastic Beanstalk Developer Guide.

• Create a Node.js application server using AWS OpsWorks. For more information on using Node.js 
with AWS OpsWorks, see Creating Your First Node.js Stack in the AWS OpsWorks User Guide.

Web Browsers Supported

The SDK for JavaScript supports all modern web browsers, including these minimum versions:

Browser Version

Google Chrome 28.0+

Mozilla Firefox 26.0+

Opera 17.0+

Microsoft Edge 25.10+

Windows Internet Explorer N/A

Apple Safari 5+

Android Browser 4.3+

Web Browsers Supported 21

https://docs.aws.amazon.com/lambda/latest/dg/programming-model.html
https://docs.aws.amazon.com/lambda/latest/dg/programming-model.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create_deploy_nodejs.html
https://docs.aws.amazon.com/opsworks/latest/userguide/gettingstarted-node.html


AWS SDK for JavaScript Developer Guide for SDK v2

Note

Frameworks such as AWS Amplify might not offer the same browser support as the SDK for 
JavaScript. Check a framework's documentation for details.

Installing the SDK for JavaScript

Whether and how you install the AWS SDK for JavaScript depends whether the code executes in 
Node.js modules or browser scripts.

Not all services are immediately available in the SDK. To find out which services are currently 
supported by the AWS SDK for JavaScript, see https://github.com/aws/aws-sdk-js/blob/master/ 
SERVICES.md

Node

The preferred way to install the AWS SDK for JavaScript for Node.js is to use npm, the Node.js 
package manager. To do so, type this at the command line.

npm install aws-sdk

In the event you see this error message:

npm WARN deprecated node-uuid@1.4.8: Use uuid module instead

Type these commands at the command line:

npm uninstall --save node-uuid
npm install --save uuid

Browser

You don't have to install the SDK to use it in browser scripts. You can load the hosted SDK 
package directly from Amazon Web Services with a script in your HTML pages. The hosted SDK 
package supports the subset of AWS services that enforce cross-origin resource sharing (CORS). 
For more information, see Loading the SDK for JavaScript.

You can create a custom build of the SDK in which you select the specific web services 
and versions that you want to use. You then download your custom SDK package for local 

Installing the SDK 22

https://github.com/aws/aws-sdk-js/blob/master/SERVICES.md
https://github.com/aws/aws-sdk-js/blob/master/SERVICES.md
https://www.npmjs.com/
https://www.npmjs.com/


AWS SDK for JavaScript Developer Guide for SDK v2

development and host it for your application to use. For more information about creating a 
custom build of the SDK, see Building the SDK for Browsers.

You can download minified and non-minified distributable versions of the current AWS SDK for 
JavaScript from GitHub at:

https://github.com/aws/aws-sdk-js/tree/master/dist

Installing Using Bower

Bower is a package manager for the web. After you install Bower, you can use it to install the SDK. 
To install the SDK using Bower, type the following into a terminal window:

bower install aws-sdk-js

Loading the SDK for JavaScript

How you load the SDK for JavaScript depends on whether you are loading it to run in a web 
browser or in Node.js.

Not all services are immediately available in the SDK. To find out which services are currently 
supported by the AWS SDK for JavaScript, see https://github.com/aws/aws-sdk-js/blob/master/ 
SERVICES.md

Node.js

After you install the SDK, you can load the AWS package in your node application using
require.

var AWS = require('aws-sdk');

React Native

To use the SDK in a React Native project, first install the SDK using npm:

npm install aws-sdk

In your application, reference the React Native compatible version of the SDK with the following 
code:

Installing Using Bower 23

https://github.com/aws/aws-sdk-js/tree/master/dist
https://bower.io
https://github.com/aws/aws-sdk-js/blob/master/SERVICES.md
https://github.com/aws/aws-sdk-js/blob/master/SERVICES.md


AWS SDK for JavaScript Developer Guide for SDK v2

var AWS = require('aws-sdk/dist/aws-sdk-react-native');

Browser

The quickest way to get started with the SDK is to load the hosted SDK package directly 
from Amazon Web Services. To do this, add a <script> element to your HTML pages in the 
following form:

<script src="https://sdk.amazonaws.com/js/aws-sdk-SDK_VERSION_NUMBER.min.js"></
script>

To find the current SDK_VERSION_NUMBER, see the API Reference for the SDK for JavaScript at
AWS SDK for JavaScript API Reference Guide.

After the SDK loads in your page, the SDK is available from the global variable AWS (or
window.AWS).

If you bundle your code and module dependencies using browserify, you load the SDK using
require, just as you do in Node.js.

Upgrading the SDK for JavaScript from Version 1

The following notes help you upgrade the SDK for JavaScript from version 1 to version 2.

Automatic Conversion of Base64 and Timestamp Types on Input/
Output

The SDK now automatically encodes and decodes base64-encoded values, as well as timestamp 
values, on the user's behalf. This change affects any operation where base64 or timestamp values 
were sent by a request or returned in a response that allows for base64-encoded values.

User code that previously converted base64 is no longer required. Values encoded as base64 are 
now returned as buffer objects from server responses and can also be passed as buffer input. For 
example, the following version 1 SQS.sendMessage parameters:

var params = { 
   MessageBody: 'Some Message', 
   MessageAttributes: { 
      attrName: { 

Upgrading From Version 1 24

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/
http://browserify.org


AWS SDK for JavaScript Developer Guide for SDK v2

         DataType: 'Binary', 
         BinaryValue: new Buffer('example text').toString('base64') 
      } 
   }
};

Can be rewritten as follows.

var params = { 
   MessageBody: 'Some Message', 
   MessageAttributes: { 
      attrName: { 
         DataType: 'Binary', 
         BinaryValue: 'example text' 
      } 
   }
};

Here is how the message is read.

sqs.receiveMessage(params, function(err, data) { 
  // buf is <Buffer 65 78 61 6d 70 6c 65 20 74 65 78 74> 
  var buf = data.Messages[0].MessageAttributes.attrName.BinaryValue; 
  console.log(buf.toString()); // "example text"
});

Moved response.data.RequestId to response.requestId

The SDK now stores request IDs for all services in a consistent place on the response object, 
rather than inside the response.data property. This improves consistency across services 
that expose request IDs in different ways. This is also a breaking change that renames the
response.data.RequestId property to response.requestId (this.requestId inside a 
callback function).

In your code, change the following:

svc.operation(params, function (err, data) { 
  console.log('Request ID:', data.RequestId);
});

To the following:

Moved response.data.RequestId to response.requestId 25



AWS SDK for JavaScript Developer Guide for SDK v2

svc.operation(params, function () { 
  console.log('Request ID:', this.requestId);
});

Exposed Wrapper Elements

If you use AWS.ElastiCache, AWS.RDS, or AWS.Redshift, you must access the response 
through the top-level output property in the response for some operations.

For example, the RDS.describeEngineDefaultParameters method used to return the 
following.

{ Parameters: [ ... ] }

It now returns the following.

{ EngineDefaults: { Parameters: [ ... ] } }

The list of affected operations for each service are shown in the following table.

Client Class Operations

AWS.ElastiCache authorizeCacheSecurityGroup 
Ingress

createCacheCluster

createCacheParameterGroup

createCacheSecurityGroup

createCacheSubnetGroup

createReplicationGroup

deleteCacheCluster

deleteReplicationGroup

describeEngineDefaultParameters

Exposed Wrapper Elements 26



AWS SDK for JavaScript Developer Guide for SDK v2

Client Class Operations

modifyCacheCluster

modifyCacheSubnetGroup

modifyReplicationGroup

purchaseReservedCacheNodesO 
ffering

rebootCacheCluster

revokeCacheSecurityGroupIngress

Exposed Wrapper Elements 27



AWS SDK for JavaScript Developer Guide for SDK v2

Client Class Operations

AWS.RDS addSourceIdentifierToSubscr 
iption

authorizeDBSecurityGroupIngress

copyDBSnapshot  createDBInstance

createDBInstanceReadReplica

createDBParameterGroup

createDBSecurityGroup

createDBSnapshot

createDBSubnetGroup

createEventSubscription

createOptionGroup

deleteDBInstance

deleteDBSnapshot

deleteEventSubscription

describeEngineDefaultParameters

modifyDBInstance

modifyDBSubnetGroup

modifyEventSubscription

modifyOptionGroup

promoteReadReplica

Exposed Wrapper Elements 28



AWS SDK for JavaScript Developer Guide for SDK v2

Client Class Operations

purchaseReservedDBInstances 
Offering

rebootDBInstance

removeSourceIdentifierFromS 
ubscription

restoreDBInstanceFromDBSnapshot

restoreDBInstanceToPointInTime

revokeDBSecurityGroupIngress

Exposed Wrapper Elements 29



AWS SDK for JavaScript Developer Guide for SDK v2

Client Class Operations

AWS.Redshift authorizeClusterSecurityGro 
upIngress

authorizeSnapshotAccess

copyClusterSnapshot

createCluster

createClusterParameterGroup

createClusterSecurityGroup

createClusterSnapshot

createClusterSubnetGroup

createEventSubscription

createHsmClientCertificate

createHsmConfiguration

deleteCluster

deleteClusterSnapshot

describeDefaultClusterParameters

disableSnapshotCopy

enableSnapshotCopy

modifyCluster

modifyClusterSubnetGroup

modifyEventSubscription

Exposed Wrapper Elements 30



AWS SDK for JavaScript Developer Guide for SDK v2

Client Class Operations

modifySnapshotCopyRetention 
Period

purchaseReservedNodeOffering

rebootCluster

restoreFromClusterSnapshot

revokeClusterSecurityGroupI 
ngress

revokeSnapshotAccess

rotateEncryptionKey

Dropped Client Properties

The .Client and .client properties have been removed from service objects. If you use the
.Client property on a service class or a .client property on a service object instance, remove 
these properties from your code.

The following code used with version 1 of the SDK for JavaScript:

var sts = new AWS.STS.Client();
// or
var sts = new AWS.STS();

sts.client.operation(...);

Should be changed to the following code.

var sts = new AWS.STS();
sts.operation(...)

Dropped Client Properties 31



AWS SDK for JavaScript Developer Guide for SDK v2

Configuring the SDK for JavaScript

Before you use the SDK for JavaScript to invoke web services using the API, you must configure the 
SDK. At a minimum, you must configure these settings:

• The Region in which you will request services.

• The credentials that authorize your access to SDK resources.

In addition to these settings, you may also have to configure permissions for your AWS resources. 
For example, you can limit access to an Amazon S3 bucket or restrict an Amazon DynamoDB table 
for read-only access.

The AWS SDKs and Tools Reference Guide also contains settings, features, and other foundational 
concepts common among many of the AWS SDKs.

The topics in this section describe various ways to configure the SDK for JavaScript for Node.js and 
JavaScript running in a web browser.

Topics

• Using the Global Configuration Object

• Setting the AWS Region

• Specifying Custom Endpoints

• SDK authentication with AWS

• Setting Credentials

• Locking API Versions

• Node.js Considerations

• Browser Script Considerations

• Bundling Applications with Webpack

Using the Global Configuration Object

There are two ways to configure the SDK:

• Set the global configuration using AWS.Config.

Using the Global Configuration Object 32

https://docs.aws.amazon.com/sdkref/latest/guide/


AWS SDK for JavaScript Developer Guide for SDK v2

• Pass extra configuration information to a service object.

Setting global configuration with AWS.Config is often easier to get started, but service-level 
configuration can provide more control over individual services. The global configuration specified 
by AWS.Config provides default settings for service objects that you create subsequently, 
simplifying their configuration. However, you can update the configuration of individual service 
objects when your needs vary from the global configuration.

Setting Global Configuration

After you load the aws-sdk package in your code you can use the  AWS global variable to access 
the SDK's classes and interact with individual services. The SDK includes a global configuration 
object, AWS.Config, that you can use to specify the SDK configuration settings required by your 
application.

Configure the SDK by setting AWS.Config properties according to your application needs. The 
following table summarizes AWS.Config properties commonly used to set the configuration of 
the SDK.

Configuration Options Description

credentials Required. Specifies the credentials used to 
determine access to services and resources.

region Required. Specifies the Region in which 
requests for services are made.

maxRetries Optional. Specifies the maximum number of 
times a given request is retried.

logger Optional. Specifies a logger object to which 
debugging information is written.

update Optional. Updates the current configuration 
with new values.

For more information about the configuration object, see Class: AWS.Config in the API 
Reference.

Setting Global Configuration 33

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/Config.html


AWS SDK for JavaScript Developer Guide for SDK v2

Global Configuration Examples

You must set the Region and the credentials in AWS.Config. You can set these properties as part 
of the AWS.Config constructor, as shown in the following browser script example:

var myCredentials = new 
 AWS.CognitoIdentityCredentials({IdentityPoolId:'IDENTITY_POOL_ID'});
var myConfig = new AWS.Config({ 
  credentials: myCredentials, region: 'us-west-2'
});

You can also set these properties after creating AWS.Config using the update method, as shown 
in the following example that updates the Region:

myConfig = new AWS.Config();
myConfig.update({region: 'us-east-1'});

You can get your default credentials by calling the static  getCredentials method of
AWS.config:

var AWS = require("aws-sdk");

AWS.config.getCredentials(function(err) { 
  if (err) console.log(err.stack); 
  // credentials not loaded 
  else { 
    console.log("Access key:", AWS.config.credentials.accessKeyId); 
  }
});

Similarly, if you have set your region correctly in your config file, you get that value by setting the
AWS_SDK_LOAD_CONFIG environment variable is set to any value and calling the static region
property of AWS.config:

var AWS = require("aws-sdk");

console.log("Region: ", AWS.config.region);

Setting Global Configuration 34



AWS SDK for JavaScript Developer Guide for SDK v2

Setting Configuration Per Service

Each service that you use in the SDK for JavaScript is accessed through a service object that is part 
of the API for that service. For example, to access the Amazon S3 service you create the Amazon 
S3 service object. You can specify configuration settings that are specific to a service as part of 
the constructor for that service object. When you set configuration values on a service object, the 
constructor takes all of the configuration values used by AWS.Config, including credentials.

For example, if you need to access Amazon EC2 objects in multiple Regions, create an Amazon 
EC2 service object for each Region and then set the Region configuration of each service object 
accordingly.

var ec2_regionA = new AWS.EC2({region: 'ap-southeast-2', maxRetries: 15, apiVersion: 
 '2014-10-01'});
var ec2_regionB = new AWS.EC2({region: 'us-east-1', maxRetries: 15, apiVersion: 
 '2014-10-01'});

You can also set configuration values specific to a service when configuring the SDK with
AWS.Config. The global configuration object supports many service-specific configuration 
options. For more information about service-specific configuration, see Class: AWS.Config in 
the AWS SDK for JavaScript API Reference.

Immutable Configuration Data

Global configuration changes apply to requests for all newly created service objects. Newly 
created service objects are configured with the current global configuration data first and then any 
local configuration options. Updates you make to the global AWS.config object don't apply to 
previously created service objects.

Existing service objects must be manually updated with new configuration data or you must create 
and use a new service object that has the new configuration data. The following example creates a 
new Amazon S3 service object with new configuration data:

s3 = new AWS.S3(s3.config);

Setting the AWS Region

A Region is a named set of AWS resources in the same geographical area. An example of a Region 
is us-east-1, which is the US East (N. Virginia) Region. You specify a Region when configuring 

Setting Configuration Per Service 35

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/Config.html


AWS SDK for JavaScript Developer Guide for SDK v2

the SDK for JavaScript so that the SDK accesses the resources in that Region. Some services are 
available only in specific Regions.

The SDK for JavaScript doesn't select a Region by default. However, you can set the Region using 
an environment variable, a shared config file, or the global configuration object.

In a Client Class Constructor

When you instantiate a service object, you can specify the Region for that resource as part of the 
client class constructor, as shown here.

var s3 = new AWS.S3({apiVersion: '2006-03-01', region: 'us-east-1'});

Using the Global Configuration Object

To set the Region in your JavaScript code, update the AWS.Config global configuration object as 
shown here.

AWS.config.update({region: 'us-east-1'});

For more information about current Regions and available services in each Region, see AWS 
Regions and Endpoints in the AWS General Reference.

Using an Environment Variable

You can set the Region using the AWS_REGION environment variable. If you define this variable, the 
SDK for JavaScript reads it and uses it.

Using a Shared Config File

Much like the shared credentials file lets you store credentials for use by the SDK, you can keep 
your Region and other configuration settings in a shared file named config that is used by SDKs. 
If the AWS_SDK_LOAD_CONFIG environment variable has been set to any value, the SDK for 
JavaScript automatically searches for a config file when it loads. Where you save the  config file 
depends on your operating system:

• Linux, macOS, or Unix users: ~/.aws/config

• Windows users: C:\Users\USER_NAME\.aws\config

In a Client Class Constructor 36

https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html


AWS SDK for JavaScript Developer Guide for SDK v2

If you don't already have a shared config file, you can create one in the designated directory. In 
the following example, the config file sets both the Region and the output format.

[default] 
   region=us-east-1 
   output=json

For more information about using shared config and credentials files, see Loading Credentials 
in Node.js from the Shared Credentials File or Configuration and Credential Files in the AWS 
Command Line Interface User Guide.

Order of Precedence for Setting the Region

The order of precedence for Region setting is as follows:

• If a Region is passed to a client class constructor, that Region is used. If not, then...

• If a Region is set on the global configuration object, that Region is used. If not, then...

• If the AWS_REGION environment variable is a truthy value, that Region is used. If not, then...

• If the AMAZON_REGION environment variable is a truthy value, that Region is used. If not, then...

• If the AWS_SDK_LOAD_CONFIG environment variable is set to any value and 
the shared credentials file (~/.aws/credentials or the path indicated by
AWS_SHARED_CREDENTIALS_FILE) contains a Region for the configured profile, that Region is 
used. If not, then...

• If the AWS_SDK_LOAD_CONFIG environment variable is set to any value and the config file 
(~/.aws/config or the path indicated by AWS_CONFIG_FILE) contains a Region for the 
configured profile, that Region is used.

Specifying Custom Endpoints

Calls to API methods in the SDK for JavaScript are made to service endpoint URIs. By default, 
these endpoints are built from the Region you have configured for your code. However, there are 
situations in which you need to specify a custom endpoint for your API calls.

Endpoint String Format

Endpoint values should be a string in the format:

Order of Precedence for Setting the Region 37

https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html
https://developer.mozilla.org/en-US/docs/Glossary/Truthy


AWS SDK for JavaScript Developer Guide for SDK v2

https://{service}.{region}.amazonaws.com

Endpoints for the ap-northeast-3 Region

The ap-northeast-3 Region in Japan is not returned by Region enumeration APIs, such as
EC2.describeRegions. To define endpoints for this Region, follow the format described 
previously. So the Amazon EC2 endpoint for this Region would be

ec2.ap-northeast-3.amazonaws.com

Endpoints for MediaConvert

You need to create a custom endpoint to use with MediaConvert. Each customer account is 
assigned its own endpoint, which you must use. Here is an example of how to use a custom 
endpoint with MediaConvert.

// Create MediaConvert service object using custom endpoint
var mcClient = new AWS.MediaConvert({endpoint: 'https://abcd1234.mediaconvert.us-
west-1.amazonaws.com'});

var getJobParams = {Id: 'job_ID'};

mcClient.getJob(getJobParams, function(err, data)) { 
   if (err) console.log(err, err.stack); // an error occurred 
   else console.log(data); // successful response
};

To get your account API endpoint, see MediaConvert.describeEndpoints in the API 
Reference.

Make sure you specify the same Region in your code as the Region in the custom endpoint URI. A 
mismatch between the Region setting and the custom endpoint URI can cause API calls to fail.

For more information on MediaConvert, see the AWS.MediaConvert class in the API Reference or 
the  AWS Elemental MediaConvert User Guide .

SDK authentication with AWS

You must establish how your code authenticates with AWS when developing with AWS services. 
You can configure programmatic access to AWS resources in different ways depending on the 
environment and the AWS access available to you.

Endpoints for the ap-northeast-3 Region 38

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/EC2.html#describeRegions-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/MediaConvert.html#describeEndpoints-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/MediaConvert.html
https://docs.aws.amazon.com/mediaconvert/latest/ug/


AWS SDK for JavaScript Developer Guide for SDK v2

To choose your method of authentication and configure it for the SDK, see Authentication and 
access in the AWS SDKs and Tools Reference Guide.

We recommend that new users who are developing locally and are not given a method of 
authentication by their employer should set up AWS IAM Identity Center. This method includes 
installing the AWS CLI for ease of configuration and for regularly signing in to the AWS access 
portal. If you choose this method, your environment should contain the following elements after 
you complete the procedure for IAM Identity Center authentication in the AWS SDKs and Tools 
Reference Guide:

• The AWS CLI, which you use to start an AWS access portal session before you run your 
application.

• A shared AWSconfig file having a [default] profile with a set of configuration values that can 
be referenced from the SDK. To find the location of this file, see Location of the shared files in 
the AWS SDKs and Tools Reference Guide.

• The shared config file sets the region setting. This sets the default AWS Region that the SDK 
uses for AWS requests. This Region is used for SDK service requests that aren't specified with a 
Region to use.

• The SDK uses the profile's SSO token provider configuration to acquire credentials before 
sending requests to AWS. The sso_role_name value, which is an IAM role connected to an IAM 
Identity Center permission set, allows access to the AWS services used in your application.

The following sample config file shows a default profile set up with SSO token provider 
configuration. The profile's sso_session setting refers to the named sso-session section. 
The sso-session section contains settings to initiate an AWS access portal session.

[default]
sso_session = my-sso
sso_account_id = 111122223333
sso_role_name = SampleRole
region = us-east-1
output = json

[sso-session my-sso]
sso_region = us-east-1
sso_start_url = https://provided-domain.awsapps.com/start
sso_registration_scopes = sso:account:access

SDK authentication with AWS 39

https://docs.aws.amazon.com/sdkref/latest/guide/access.html
https://docs.aws.amazon.com/sdkref/latest/guide/access.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/file-format.html
https://docs.aws.amazon.com/sdkref/latest/guide/file-location.html
https://docs.aws.amazon.com/sdkref/latest/guide/feature-region.html
https://docs.aws.amazon.com/sdkref/latest/guide/feature-sso-credentials.html#feature-sso-credentials-profile
https://docs.aws.amazon.com/sdkref/latest/guide/file-format.html#section-session


AWS SDK for JavaScript Developer Guide for SDK v2

The SDK for JavaScript does not need additional packages (such as SSO and SSOOIDC) to be added 
to your application to use IAM Identity Center authentication.

Start an AWS access portal session

Before running an application that accesses AWS services, you need an active AWS access portal 
session for the SDK to use IAM Identity Center authentication to resolve credentials. Depending on 
your configured session lengths, your access will eventually expire and the SDK will encounter an 
authentication error. To sign in to the AWS access portal, run the following command in the AWS 
CLI.

aws sso login

If you followed the guidance and have a default profile setup, you do not need to call the 
command with a --profile option. If your SSO token provider configuration is using a named 
profile, the command is aws sso login --profile named-profile.

To optionally test if you already have an active session, run the following AWS CLI command.

aws sts get-caller-identity

If your session is active, the response to this command reports the IAM Identity Center account and 
permission set configured in the shared config file.

Note

If you already have an active AWS access portal session and run aws sso login, you will 
not be required to provide credentials.
The sign-in process might prompt you to allow the AWS CLI access to your data. Because 
the AWS CLI is built on top of the SDK for Python, permission messages might contain 
variations of the botocore name.

More authentication information

Human users, also known as human identities, are the people, administrators, developers, 
operators, and consumers of your applications. They must have an identity to access your AWS 
environments and applications. Human users that are members of your organization - that means 
you, the developer - are known as workforce identities.

Start an AWS access portal session 40



AWS SDK for JavaScript Developer Guide for SDK v2

Use temporary credentials when accessing AWS. You can use an identity provider for your human 
users to provide federated access to AWS accounts by assuming roles, which provide temporary 
credentials. For centralized access management, we recommend that you use AWS IAM Identity 
Center (IAM Identity Center) to manage access to your accounts and permissions within those 
accounts. For more alternatives, see the following:

• To learn more about best practices, see Security best practices in IAM in the IAM User Guide.

• To create short-term AWS credentials, see Temporary Security Credentials in the IAM User Guide.

• To learn about other SDK for JavaScript credential providers, see Standardized credential 
providers in the AWS SDKs and Tools Reference Guide.

Setting Credentials

AWS uses credentials to identify who is calling services and whether access to the requested 
resources is allowed.

Whether running in a web browser or in a Node.js server, your JavaScript code must obtain valid 
credentials before it can access services through the API. Credentials can be set globally on the 
configuration object, using AWS.Config, or per service, by passing credentials directly to a service 
object.

There are several ways to set credentials that differ between Node.js and JavaScript in web 
browsers. The topics in this section describe how to set credentials in Node.js or web browsers. In 
each case, the options are presented in recommended order.

Best Practices for Credentials

Properly setting credentials ensures that your application or browser script can access the services 
and resources needed while minimizing exposure to security issues that may impact mission critical 
applications or compromise sensitive data.

An important principle to apply when setting credentials is to always grant the least privilege 
required for your task. It's more secure to provide minimal permissions on your resources and add 
further permissions as needed, rather than provide permissions that exceed the least privilege 
and, as a result, be required to fix security issues you might discover later. For example, unless you 
have a need to read and write individual resources, such as objects in an Amazon S3 bucket or a 
DynamoDB table, set those permissions to read only.

Setting Credentials 41

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/sdkref/latest/guide/standardized-credentials.html
https://docs.aws.amazon.com/sdkref/latest/guide/standardized-credentials.html


AWS SDK for JavaScript Developer Guide for SDK v2

For more information on granting the least privilege, see the Grant Least Privilege section of the 
Best Practices topic in the  IAM User Guide.

Warning

While it is possible to do so, we recommend you not hard code credentials inside an 
application or browser script. Hard coding credentials poses a risk of exposing sensitive 
information.

For more information about how to manage your access keys, see  Best Practices for Managing 
AWS Access Keys in the AWS General Reference.

Topics

• Setting Credentials in Node.js

• Setting Credentials in a Web Browser

Setting Credentials in Node.js

There are several ways in Node.js to supply your credentials to the SDK. Some of these are more 
secure and others afford greater convenience while developing an application. When obtaining 
credentials in Node.js, be careful about relying on more than one source such as an environment 
variable and a JSON file you load. You can change the permissions under which your code runs 
without realizing the change has happened.

Here are the ways you can supply your credentials in order of recommendation:

1. Loaded from AWS Identity and Access Management (IAM) roles for Amazon EC2

2. Loaded from the shared credentials file (~/.aws/credentials)

3. Loaded from environment variables

4. Loaded from a JSON file on disk

5. Other credential-provider classes provided by the JavaScript SDK

If more than one credential source is available to the SDK, the default precedence of selection is as 
follows:

1. Credentials that are explicitly set through the service-client constructor

Setting Credentials in Node.js 42

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
https://docs.aws.amazon.com/general/latest/gr/aws-access-keys-best-practices.html
https://docs.aws.amazon.com/general/latest/gr/aws-access-keys-best-practices.html


AWS SDK for JavaScript Developer Guide for SDK v2

2. Environment variables

3. The shared credentials file

4. Credentials loaded from the ECS credentials provider (if applicable)

5. Credentials that are obtained by using a credential process specified in the shared AWS config 
file or the shared credentials file. For more information, see the section called “Credentials using 
a Configured Credential Process”.

6. Credentials loaded from AWS IAM using the credentials provider of the Amazon EC2 instance (if 
configured in the instance metadata)

For more information, see Class: AWS.Credentials and Class: 
AWS.CredentialProviderChain in the API reference.

Warning

While it is possible to do so, we do not recommend hard-coding your AWS credentials in 
your application. Hard-coding credentials poses a risk of exposing your access key ID and 
secret access key.

The topics in this section describe how to load credentials into Node.js.

Topics

• Loading Credentials in Node.js from IAM roles for Amazon EC2

• Loading Credentials for a Node.js Lambda Function

• Loading Credentials in Node.js from the Shared Credentials File

• Loading Credentials in Node.js from Environment Variables

• Loading Credentials in Node.js from a JSON File

• Loading Credentials in Node.js using a Configured Credential Process

Loading Credentials in Node.js from IAM roles for Amazon EC2

If you run your Node.js application on an Amazon EC2 instance, you can leverage IAM roles for 
Amazon EC2 to automatically provide credentials to the instance. If you configure your instance to 
use IAM roles, the SDK automatically selects the IAM credentials for your application, eliminating 
the need to manually provide credentials.

Setting Credentials in Node.js 43

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/Credentials.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/CredentialProviderChain.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/CredentialProviderChain.html


AWS SDK for JavaScript Developer Guide for SDK v2

For more information on adding IAM roles to an Amazon EC2 instance, see Using IAM roles for 
Amazon EC2 instances in the AWS SDKs and Tools Reference Guide.

Loading Credentials for a Node.js Lambda Function

When you create an AWS Lambda function, you must create a special IAM role that has permission 
to execute the function. This role is called the execution role. When you set up a Lambda function, 
you must specify the IAM role you created as the corresponding execution role.

The execution role provides the Lambda function with the credentials it needs to run and to invoke 
other web services. As a result, you do not need to provide credentials to the Node.js code you 
write within a Lambda function.

For more information about creating a Lambda execution role, see Manage Permissions: Using an 
IAM Role (Execution Role) in the AWS Lambda Developer Guide.

Loading Credentials in Node.js from the Shared Credentials File

You can keep your AWS credentials data in a shared file used by SDKs and the command line 
interface. When the SDK for JavaScript loads, it automatically searches the shared credentials 
file, which is named "credentials". Where you keep the shared credentials file depends on your 
operating system:

• The shared credentials file on Linux, Unix, and macOS: ~/.aws/credentials

• The shared credentials file on Windows: C:\Users\USER_NAME\.aws\credentials

If you do not already have a shared credentials file, see SDK authentication with AWS. Once you 
follow those instructions, you should see text similar to the following in the credentials file, where
<YOUR_ACCESS_KEY_ID> is your access key ID and <YOUR_SECRET_ACCESS_KEY> is your secret 
access key:

[default]
aws_access_key_id = <YOUR_ACCESS_KEY_ID>
aws_secret_access_key = <YOUR_SECRET_ACCESS_KEY>

For an example showing this file being used, see Getting Started in Node.js.

The [default] section heading specifies a default profile and associated values for credentials. 
You can create additional profiles in the same shared configuration file, each with its own 

Setting Credentials in Node.js 44

https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-roles-for-ec2.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-roles-for-ec2.html
https://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html#lambda-intro-execution-role
https://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html#lambda-intro-execution-role


AWS SDK for JavaScript Developer Guide for SDK v2

credential information. The following example shows a configuration file with the default profile 
and two additional profiles:

[default] ; default profile
aws_access_key_id = <DEFAULT_ACCESS_KEY_ID>
aws_secret_access_key = <DEFAULT_SECRET_ACCESS_KEY>
    
[personal-account] ; personal account profile
aws_access_key_id = <PERSONAL_ACCESS_KEY_ID>
aws_secret_access_key = <PERSONAL_SECRET_ACCESS_KEY>
    
[work-account] ; work account profile
aws_access_key_id = <WORK_ACCESS_KEY_ID>
aws_secret_access_key = <WORK_SECRET_ACCESS_KEY>

By default, the SDK checks the AWS_PROFILE environment variable to determine which profile 
to use. If the AWS_PROFILE variable is not set in your environment, the SDK uses the credentials 
for the [default] profile. To use one of the alternate profiles, set or change the value of the
AWS_PROFILE environment variable. For example, given the configuration file shown above, to 
use the credentials from the work account, set the AWS_PROFILE environment variable to work-
account (as appropriate for your operating system).

Note

When setting environment variables, be sure to take appropriate actions afterwards 
(according to the needs of your operating system) to make the variables available in the 
shell or command environment.

After setting the environment variable (if needed), you can run a JavaScript file that uses the SDK, 
such as for example, a file named script.js.

$ node script.js

You can also explicitly select the profile used by the SDK, either by setting
process.env.AWS_PROFILE before loading the SDK, or by selecting the credential provider as 
shown in the following example:

var credentials = new AWS.SharedIniFileCredentials({profile: 'work-account'});

Setting Credentials in Node.js 45



AWS SDK for JavaScript Developer Guide for SDK v2

AWS.config.credentials = credentials;

Loading Credentials in Node.js from Environment Variables

The SDK automatically detects AWS credentials set as variables in your environment and uses them 
for SDK requests, eliminating the need to manage credentials in your application. The environment 
variables that you set to provide your credentials are:

• AWS_ACCESS_KEY_ID

• AWS_SECRET_ACCESS_KEY

• AWS_SESSION_TOKEN

For more details on setting environment variables, see Environment variables support in the AWS 
SDKs and Tools Reference Guide.

Loading Credentials in Node.js from a JSON File

You can load configuration and credentials from a JSON document on disk using
AWS.config.loadFromPath. The path specified is relative to the current working directory of 
your process. For example, to load credentials from a 'config.json' file with the following 
content:

{ "accessKeyId": <YOUR_ACCESS_KEY_ID>, "secretAccessKey": <YOUR_SECRET_ACCESS_KEY>, 
 "region": "us-east-1" }

Use the following command:

AWS.config.loadFromPath('./config.json');

Note

Loading configuration data from a JSON document resets all existing configuration data. 
Add additional configuration data after using this technique. Loading credentials from a 
JSON document is not supported in browser scripts.

Setting Credentials in Node.js 46

https://docs.aws.amazon.com/sdkref/latest/guide/environment-variables.html


AWS SDK for JavaScript Developer Guide for SDK v2

Loading Credentials in Node.js using a Configured Credential Process

You can source credentials by using a method that isn't built into the SDK. To do this, 
specify a credential process in the shared AWS config file or the shared credentials file. If the
AWS_SDK_LOAD_CONFIG environment variable is set to any value, the SDK will prefer the process 
specified in the config file over the process specified in the credentials file (if any).

For details about specifying a credential process in the shared AWS config file or the shared 
credentials file, see the AWS CLI Command Reference, specifically the information about Sourcing 
Credentials From External Processes.

For information about using the AWS_SDK_LOAD_CONFIG environment variable, see the section 
called “Using a Shared Config File” in this document.

Setting Credentials in a Web Browser

There are several ways to supply your credentials to the SDK from browser scripts. Some of these 
are more secure and others afford greater convenience while developing a script. Here are the ways 
you can supply your credentials in order of recommendation:

1. Using Amazon Cognito Identity to authenticate users and supply credentials

2. Using web federated identity

3. Hard coded in the script

Warning

We do not recommend hard coding your AWS credentials in your scripts. Hard coding 
credentials poses a risk of exposing your access key ID and secret access key.

Topics

• Using Amazon Cognito Identity to Authenticate Users

• Using Web Federated Identity to Authenticate Users

• Web Federated Identity Examples

Setting Credentials in a Web Browser 47

https://docs.aws.amazon.com/cli/latest/topic/config-vars.html#sourcing-credentials-from-external-processes
https://docs.aws.amazon.com/cli/latest/topic/config-vars.html#sourcing-credentials-from-external-processes


AWS SDK for JavaScript Developer Guide for SDK v2

Using Amazon Cognito Identity to Authenticate Users

The recommended way to obtain AWS credentials for your browser scripts is to use the Amazon 
Cognito Identity credentials object, AWS.CognitoIdentityCredentials. Amazon Cognito 
enables authentication of users through third-party identity providers.

To use Amazon Cognito Identity, you must first create an identity pool in the Amazon Cognito 
console. An identity pool represents the group of identities that your application provides to your 
users. The identities given to users uniquely identify each user account. Amazon Cognito identities 
are not credentials. They are exchanged for credentials using web identity federation support in 
AWS Security Token Service (AWS STS).

Amazon Cognito helps you manage the abstraction of identities across multiple identity providers 
with the AWS.CognitoIdentityCredentials object. The identity that is loaded is then 
exchanged for credentials in AWS STS.

Configuring the Amazon Cognito Identity Credentials Object

If you have not yet created one, create an identity pool to use with your browser scripts in the
Amazon Cognito console before you configure AWS.CognitoIdentityCredentials. Create and 
associate both authenticated and unauthenticated IAM roles for your identity pool.

Unauthenticated users do not have their identity verified, making this role appropriate for 
guest users of your app or in cases when it doesn't matter if users have their identities verified. 
Authenticated users log in to your application through a third-party identity provider that verifies 
their identities. Make sure you scope the permissions of resources appropriately so you don't grant 
access to them from unauthenticated users.

After you configure an identity pool with identity providers attached, you can use
AWS.CognitoIdentityCredentials to authenticate users. To configure your application 
credentials to use AWS.CognitoIdentityCredentials, set the credentials property of 
either AWS.Config or a per-service configuration. The following example uses AWS.Config:

AWS.config.credentials = new AWS.CognitoIdentityCredentials({ 
  IdentityPoolId: 'us-east-1:1699ebc0-7900-4099-b910-2df94f52a030', 
  Logins: { // optional tokens, used for authenticated login 
    'graph.facebook.com': 'FBTOKEN', 
    'www.amazon.com': 'AMAZONTOKEN', 
    'accounts.google.com': 'GOOGLETOKEN' 
  }

Setting Credentials in a Web Browser 48

https://console.aws.amazon.com/cognito


AWS SDK for JavaScript Developer Guide for SDK v2

});

The optional Logins property is a map of identity provider names to the identity tokens for those 
providers. How you get the token from your identity provider depends on the provider you use. For 
example, if Facebook is one of your identity providers, you might use the FB.login function from 
the Facebook SDK to get an identity provider token:

FB.login(function (response) { 
  if (response.authResponse) { // logged in 
    AWS.config.credentials = new AWS.CognitoIdentityCredentials({ 
      IdentityPoolId: 'us-east-1:1699ebc0-7900-4099-b910-2df94f52a030', 
      Logins: { 
        'graph.facebook.com': response.authResponse.accessToken 
      } 
    }); 

    s3 = new AWS.S3; // we can now create our service object 

    console.log('You are now logged in.'); 
  } else { 
    console.log('There was a problem logging you in.'); 
  }
});

Switching Unauthenticated Users to Authenticated Users

Amazon Cognito supports both authenticated and unauthenticated users. Unauthenticated users 
receive access to your resources even if they aren't logged in with any of your identity providers. 
This degree of access is useful to display content to users prior to logging in. Each unauthenticated 
user has a unique identity in Amazon Cognito even though they have not been individually logged 
in and authenticated.

Initially Unauthenticated User

Users typically start with the unauthenticated role, for which you set the credentials property of 
your configuration object without a Logins property. In this case, your default configuration might 
look like the following:

// set the default config object
var creds = new AWS.CognitoIdentityCredentials({ 

Setting Credentials in a Web Browser 49

https://developers.facebook.com/docs/facebook-login/web


AWS SDK for JavaScript Developer Guide for SDK v2

 IdentityPoolId: 'us-east-1:1699ebc0-7900-4099-b910-2df94f52a030'
});
AWS.config.credentials = creds;

Switch to Authenticated User

When an unauthenticated user logs in to an identity provider and you have a token, you can switch 
the user from unauthenticated to authenticated by calling a custom function that updates the 
credentials object and adds the Logins token:

// Called when an identity provider has a token for a logged in user
function userLoggedIn(providerName, token) { 
  creds.params.Logins = creds.params.Logins || {}; 
  creds.params.Logins[providerName] = token; 
                     
  // Expire credentials to refresh them on the next request 
  creds.expired = true;
}

You can also Create CognitoIdentityCredentials object. If you do, you must reset the 
credentials properties of existing service objects you created. Service objects read from the global 
configuration only on object initialization.

For more information about the CognitoIdentityCredentials object, see
AWS.CognitoIdentityCredentials in the AWS SDK for JavaScript API Reference.

Using Web Federated Identity to Authenticate Users

You can directly configure individual identity providers to access AWS resources using web identity 
federation. AWS currently supports authenticating users using web identity federation through 
several identity providers:

• Login with Amazon

• Facebook Login

• Google Sign-in

You must first register your application with the providers that your application supports. Next, 
create an IAM role and set up permissions for it. The IAM role you create is then used to grant the 
permissions you configured for it through the respective identity provider. For example, you can 

Setting Credentials in a Web Browser 50

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/CognitoIdentityCredentials.html
https://login.amazon.com
https://www.facebook.com/about/login
https://developers.google.com/identity/


AWS SDK for JavaScript Developer Guide for SDK v2

set up a role that allows users who logged in through Facebook to have read access to a specific 
Amazon S3 bucket you control.

After you have both an IAM role with configured privileges and an application registered with your 
chosen identity providers, you can set up the SDK to get credentials for the IAM role using helper 
code, as follows:

AWS.config.credentials = new AWS.WebIdentityCredentials({ 
   RoleArn: 'arn:aws:iam::<AWS_ACCOUNT_ID>/:role/<WEB_IDENTITY_ROLE_NAME>', 
   ProviderId: 'graph.facebook.com|www.amazon.com', // this is null for Google 
   WebIdentityToken: ACCESS_TOKEN
});

The value in the ProviderId parameter depends on the specified identity provider. The value in 
the WebIdentityToken parameter is the access token retrieved from a successful login with the 
identity provider. For more information on how to configure and retrieve access tokens for each 
identity provider, see the documentation for the identity provider.

Step 1: Registering with Identity Providers

To begin, register an application with the identity providers you choose to support. You will be 
asked to provide information that identifies your application and possibly its author. This ensures 
that the identity providers know who is receiving their user information. In each case, the identity 
provider will issue an application ID that you use to configure user roles.

Step 2: Creating an IAM Role for an Identity Provider

After you obtain the application ID from an identity provider, go to the IAM console at https:// 
console.aws.amazon.com/iam/ to create a new IAM role.

To create an IAM role for an identity provider

1. Go to the Roles section of the console and then choose Create New Role.

2. Type a name for the new role that helps you keep track of its use, such as
facebookIdentity, and then choose Next Step.

3. In Select Role Type, choose Role for Identity Provider Access.

4. For Grant access to web identity providers, choose Select.

5. From the Identity Provider list, choose the identity provider that you want to use for this IAM 
role.

Setting Credentials in a Web Browser 51

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/


AWS SDK for JavaScript Developer Guide for SDK v2

6. Type the application ID provided by the identity provider in Application ID and then choose
Next Step.

7. Configure permissions for the resources you want to expose, allowing access to specific 
operations on specific resources. For more information about IAM permissions, see  Overview 
of AWS IAM Permissions in the IAM User Guide. Review and, if needed, customize the role's 
trust relationship, and then choose Next Step.

8. Attach additional policies you need and then choose Next Step. For more information about 
IAM policies, see Overview of IAM Policies in the IAM User Guide.

9. Review the new role and then choose Create Role.

You can provide other constraints to the role, such as scoping it to specific user IDs. If the role 
grants write permissions to your resources, make sure you correctly scope the role to users with the 
correct privileges, otherwise any user with an Amazon, Facebook, or Google identity will be able to 
modify resources in your application.

For more information on using web identity federation in IAM, see  About Web Identity Federation
in the IAM User Guide.

Step 3: Obtaining a Provider Access Token After Login

Set up the login action for your application by using the identity provider's SDK. You can download 
and install a JavaScript SDK from the identity provider that enables user login, using either OAuth 
or OpenID. For information on how to download and set up the SDK code in your application, see 
the SDK documentation for your identity provider:

• Login with Amazon

• Facebook Login

• Google Sign-in

Setting Credentials in a Web Browser 52

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_permissions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_permissions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers_oidc.html
https://login.amazon.com/website
https://developers.facebook.com/docs/javascript
https://developers.google.com/identity/


AWS SDK for JavaScript Developer Guide for SDK v2

Step 4: Obtaining Temporary Credentials

After your application, roles, and resource permissions are configured, add the code to your 
application to obtain temporary credentials. These credentials are provided through the AWS 
Security Token Service using web identity federation. Users log in to the identity provider, which 
returns an access token. Set up the AWS.WebIdentityCredentials object using the ARN for the 
IAM role you created for this identity provider:

AWS.config.credentials = new AWS.WebIdentityCredentials({ 
    RoleArn: 'arn:aws:iam::<AWS_ACCOUNT_ID>:role/<WEB_IDENTITY_ROLE_NAME>', 
    ProviderId: 'graph.facebook.com|www.amazon.com', // Omit this for Google 
    WebIdentityToken: ACCESS_TOKEN // Access token from identity provider
});

Service objects that are created subsequently will have the proper credentials. Objects created 
before setting the AWS.config.credentials property won't have the current credentials.

You can also create AWS.WebIdentityCredentials before retrieving the access token. This 
allows you to create service objects that depend on credentials before loading the access token. To 
do this, create the credentials object without the WebIdentityToken parameter:

AWS.config.credentials = new AWS.WebIdentityCredentials({ 
  RoleArn: 'arn:aws:iam::<AWS_ACCOUNT_ID>:role/<WEB_IDENTITY_ROLE_NAME>', 
  ProviderId: 'graph.facebook.com|www.amazon.com' // Omit this for Google
});

// Create a service object
var s3 = new AWS.S3;

Then set WebIdentityToken in the callback from the identity provider SDK that contains the 
access token:

AWS.config.credentials.params.WebIdentityToken = accessToken;

Web Federated Identity Examples

Here are a few examples of using web federated identity to obtain credentials in browser 
JavaScript. These examples must be run from an http:// or https:// host scheme to ensure the 
identity provider can redirect to your application.

Setting Credentials in a Web Browser 53



AWS SDK for JavaScript Developer Guide for SDK v2

Login with Amazon Example

The following code shows how to use Login with Amazon as an identity provider.

<a href="#" id="login"> 
  <img border="0" alt="Login with Amazon" 
    src="https://images-na.ssl-images-amazon.com/images/G/01/lwa/
btnLWA_gold_156x32.png" 
    width="156" height="32" />
</a>
<div id="amazon-root"></div>
<script type="text/javascript"> 
  var s3 = null; 
  var clientId = 'amzn1.application-oa2-client.1234567890abcdef'; // client ID 
  var roleArn = 'arn:aws:iam::<AWS_ACCOUNT_ID>:role/<WEB_IDENTITY_ROLE_NAME>'; 

  window.onAmazonLoginReady = function() { 
    amazon.Login.setClientId(clientId); // set client ID 

    document.getElementById('login').onclick = function() { 
      amazon.Login.authorize({scope: 'profile'}, function(response) { 
        if (!response.error) { // logged in 
          AWS.config.credentials = new AWS.WebIdentityCredentials({ 
            RoleArn: roleArn, 
            ProviderId: 'www.amazon.com', 
            WebIdentityToken: response.access_token 
          }); 

          s3 = new AWS.S3(); 

          console.log('You are now logged in.'); 
        } else { 
          console.log('There was a problem logging you in.'); 
        } 
      }); 
    }; 
  }; 

  (function(d) { 
    var a = d.createElement('script'); a.type = 'text/javascript'; 
    a.async = true; a.id = 'amazon-login-sdk'; 
    a.src = 'https://api-cdn.amazon.com/sdk/login1.js'; 
    d.getElementById('amazon-root').appendChild(a); 
  })(document);

Setting Credentials in a Web Browser 54



AWS SDK for JavaScript Developer Guide for SDK v2

</script>

Facebook Login Example

The following code shows how to use Facebook Login as an identity provider:

<button id="login">Login</button>
<div id="fb-root"></div>
<script type="text/javascript">
var s3 = null;
var appId = '1234567890'; // Facebook app ID
var roleArn = 'arn:aws:iam::<AWS_ACCOUNT_ID>:role/<WEB_IDENTITY_ROLE_NAME>';

window.fbAsyncInit = function() { 
  // init the FB JS SDK 
  FB.init({appId: appId}); 

  document.getElementById('login').onclick = function() { 
    FB.login(function (response) { 
      if (response.authResponse) { // logged in 
        AWS.config.credentials = new AWS.WebIdentityCredentials({ 
          RoleArn: roleArn, 
          ProviderId: 'graph.facebook.com', 
          WebIdentityToken: response.authResponse.accessToken 
        }); 

        s3 = new AWS.S3; 

        console.log('You are now logged in.'); 
      } else { 
        console.log('There was a problem logging you in.'); 
      } 
    }); 
  };
};

// Load the FB JS SDK asynchronously
(function(d, s, id){ 
   var js, fjs = d.getElementsByTagName(s)[0]; 
   if (d.getElementById(id)) {return;} 
   js = d.createElement(s); js.id = id; 
   js.src = "//connect.facebook.net/en_US/all.js"; 
   fjs.parentNode.insertBefore(js, fjs); 
 }(document, 'script', 'facebook-jssdk'));

Setting Credentials in a Web Browser 55



AWS SDK for JavaScript Developer Guide for SDK v2

</script>

Google+ Sign-in Example

The following code shows how to use Google+ Sign-in as an identity provider. The access token 
used for web identity federation from Google is stored in response.id_token instead of
access_token like other identity providers.

<span 
  id="login" 
  class="g-signin" 
  data-height="short" 
  data-callback="loginToGoogle" 
  data-cookiepolicy="single_host_origin" 
  data-requestvisibleactions="http://schemas.google.com/AddActivity" 
  data-scope="https://www.googleapis.com/auth/plus.login">
</span>
<script type="text/javascript"> 
  var s3 = null; 
  var clientID = '1234567890.apps.googleusercontent.com'; // Google client ID 
  var roleArn = 'arn:aws:iam::<AWS_ACCOUNT_ID>:role/<WEB_IDENTITY_ROLE_NAME>'; 

  document.getElementById('login').setAttribute('data-clientid', clientID); 
  function loginToGoogle(response) { 
    if (!response.error) { 
      AWS.config.credentials = new AWS.WebIdentityCredentials({ 
        RoleArn: roleArn, WebIdentityToken: response.id_token 
      }); 

      s3 = new AWS.S3(); 

      console.log('You are now logged in.'); 
    } else { 
      console.log('There was a problem logging you in.'); 
    } 
  } 

  (function() { 
    var po = document.createElement('script'); po.type = 'text/javascript'; po.async = 
 true; 
    po.src = 'https://apis.google.com/js/client:plusone.js'; 
    var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, 
 s); 

Setting Credentials in a Web Browser 56



AWS SDK for JavaScript Developer Guide for SDK v2

  })(); 
 </script>

Locking API Versions

AWS services have API version numbers to keep track of API compatibility. API versions in AWS 
services are identified by a YYYY-mm-dd formatted date string. For example, the current API 
version for Amazon S3 is 2006-03-01.

We recommend locking the API version for a service if you rely on it in production code. This can 
isolate your applications from service changes resulting from updates to the SDK. If you don't 
specify an API version when creating service objects, the SDK uses the latest API version by default. 
This could cause your application to reference an updated API with changes that negatively impact 
your application.

To lock the API version that you use for a service, pass the apiVersion parameter when 
constructing the service object. In the following example, a newly created AWS.DynamoDB service 
object is locked to the 2011-12-05 API version:

var dynamodb = new AWS.DynamoDB({apiVersion: '2011-12-05'});

You can globally configure a set of service API versions by specifying the  apiVersions
parameter in AWS.Config. For example, to set specific versions of the DynamoDB and Amazon 
EC2 APIs along with the current Amazon Redshift API, set  apiVersions as follows:

AWS.config.apiVersions = { 
  dynamodb: '2011-12-05', 
  ec2: '2013-02-01', 
  redshift: 'latest'
};

Getting API Versions

To get the API version for a service, see the Locking the API Version section on the service's 
reference page, such as https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html for 
Amazon S3.

Locking API Versions 57

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html


AWS SDK for JavaScript Developer Guide for SDK v2

Node.js Considerations

Although Node.js code is JavaScript, using the AWS SDK for JavaScript in Node.js can differ from 
using the SDK in browser scripts. Some API methods work in Node.js but not in browser scripts, as 
well as the other way around. And successfully using some APIs depends on your familiarity with 
common Node.js coding patterns, such as importing and using other Node.js modules like the File 
System (fs) module.

Using Built-In Node.js Modules

Node.js provides a collection of built-in modules you can use without installing them. To use these 
modules, create an object with the require method to specify the module name. For example, to 
include the built-in HTTP module, use the following.

var http = require('http');

Invoke methods of the module as if they are methods of that object. For example, here is code that 
reads an HTML file.

// include File System module
var fs = require('fs');  
// Invoke readFile method  
fs.readFile('index.html', function(err, data) { 
  if (err) { 
    throw err; 
  } else { 
    // Successful file read 
  }
});

For a complete list of all built-in modules that Node.js provides, see Node.js v6.11.1 
Documentation on the Node.js website.

Using NPM Packages

In addition to the built-in modules, you can also include and incorporate third-party code from 
npm, the Node.js package manager. This is a repository of open source Node.js packages and a 
command-line interface for installing those packages. For more information about npm and a list 

Node.js Considerations 58

https://nodejs.org/api/modules.html
https://nodejs.org/api/modules.html


AWS SDK for JavaScript Developer Guide for SDK v2

of currently available packages, see https://www.npmjs.com. You can also learn about additional 
Node.js packages you can use here on GitHub.

One example of an npm package you can use with the AWS SDK for JavaScript is browserify. For 
details, see Building the SDK as a Dependency with Browserify. Another example is webpack. For 
details, see Bundling Applications with Webpack.

Topics

• Configuring maxSockets in Node.js

• Reusing Connections with Keep-Alive in Node.js

• Configuring Proxies for Node.js

• Registering Certificate Bundles in Node.js

Configuring maxSockets in Node.js

In Node.js, you can set the maximum number of connections per origin. If  maxSockets is set, the 
low-level HTTP client queues requests and assigns them to sockets as they become available.

This lets you set an upper bound on the number of concurrent requests to a given origin at a time. 
Lowering this value can reduce the number of throttling or timeout errors received. However, it can 
also increase memory usage because requests are queued until a socket becomes available.

The following example shows how to set maxSockets for all service objects you create. This 
example allows up to 25 concurrent connections to each service endpoint.

var AWS = require('aws-sdk');
var https = require('https');
var agent = new https.Agent({ 
   maxSockets: 25
});

AWS.config.update({ 
   httpOptions:{ 
      agent: agent 
   }
});

The same can be done per service.

Configuring maxSockets in Node.js 59

https://www.npmjs.com
https://github.com/sindresorhus/awesome-nodejs


AWS SDK for JavaScript Developer Guide for SDK v2

var AWS = require('aws-sdk');
var https = require('https');
var agent = new https.Agent({ 
   maxSockets: 25
});

var dynamodb = new AWS.DynamoDB({ 
   apiVersion: '2012-08-10' 
   httpOptions:{ 
      agent: agent 
   }
});

When using the default of https, the SDK takes the maxSockets value from the globalAgent. 
If the maxSockets value is not defined or is Infinity, the SDK assumes a maxSockets value of 
50.

For more information about setting maxSockets in Node.js, see the Node.js online documentation.

Reusing Connections with Keep-Alive in Node.js

By default, the default Node.js HTTP/HTTPS agent creates a new TCP connection for every new 
request. To avoid the cost of establishing a new connection, you can reuse an existing connection.

For short-lived operations, such as DynamoDB queries, the latency overhead of setting up a TCP 
connection might be greater than the operation itself. Additionally, since DynamoDB encryption 
at rest is integrated with AWS KMS, you may experience latencies from the database having to re-
establish new AWS KMS cache entries for each operation.

The easiest way to configure SDK for JavaScript to reuse TCP connections is to set the 
AWS_NODEJS_CONNECTION_REUSE_ENABLED environment variable to 1. This feature was added 
in the 2.463.0 release.

Alternatively, you can set the keepAlive property of an HTTP or HTTPS agent set to true, as 
shown in the following example.

const AWS = require('aws-sdk');
// http or https
const http = require('http');
const agent = new http.Agent({ 
  keepAlive: true,  

Reusing Connections with Keep-Alive in Node.js 60

https://nodejs.org/dist/latest-v4.x/docs/api/http.html#http_agent_maxsockets
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/encryption.howitworks.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/encryption.howitworks.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/encryption.howitworks.html
https://github.com/aws/aws-sdk-js/blob/master/CHANGELOG.md#24630


AWS SDK for JavaScript Developer Guide for SDK v2

// Infinity is read as 50 sockets 
  maxSockets: Infinity
});

AWS.config.update({ 
  httpOptions: { 
    agent 
  }
});

The following example shows how to set keepAlive for just a DynamoDB client:

const AWS = require('aws-sdk')
// http or https
const https = require('https');
const agent = new https.Agent({ 
  keepAlive: true
});

const dynamodb = new AWS.DynamoDB({ 
  httpOptions: { 
    agent 
  }
});

If keepAlive is enabled, you can also set the initial delay for TCP Keep-Alive packets with
keepAliveMsecs, which by default is 1000ms. See the Node.js documentation for details.

Configuring Proxies for Node.js

If you can't directly connect to the internet, the SDK for JavaScript supports use of HTTP or HTTPS 
proxies through a third-party HTTP agent, such as proxy-agent. To install proxy-agent, type the 
following at the command line.

npm install proxy-agent --save

If you decide to use a different proxy, first follow the installation and configuration instructions 
for that proxy. To use this or another third-party proxy in your application, you must set the
httpOptions property of  AWS.Config to specify the proxy you choose. This example shows 
proxy-agent.

Configuring Proxies for Node.js 61

https://nodejs.org/api/http.html
https://github.com/TooTallNate/proxy-agents/tree/main/packages/proxy-agent


AWS SDK for JavaScript Developer Guide for SDK v2

var AWS = require("aws-sdk");
var ProxyAgent = require('proxy-agent').ProxyAgent;
AWS.config.update({ 
  httpOptions: { agent: new ProxyAgent('http://internal.proxy.com') }
});

For more information about other proxy libraries, see npm, the Node.js package manager.

Registering Certificate Bundles in Node.js

The default trust stores for Node.js include the certificates needed to access AWS services. In some 
cases, it might be preferable to include only a specific set of certificates.

In this example, a specific certificate on disk is used to create an  https.Agent that rejects 
connections unless the designated certificate is provided. The newly created https.Agent is then 
used to update the SDK configuration.

var fs = require('fs');
var https = require('https');
var certs = [ 
  fs.readFileSync('/path/to/cert.pem')
]; 
     
AWS.config.update({ 
  httpOptions: { 
    agent: new https.Agent({ 
      rejectUnauthorized: true, 
      ca: certs 
    }) 
  }
});

Browser Script Considerations

The following topics describe special considerations for using the AWS SDK for JavaScript in 
browser scripts.

Topics

• Building the SDK for Browsers

Registering Certificate Bundles in Node.js 62

https://www.npmjs.com/


AWS SDK for JavaScript Developer Guide for SDK v2

• Cross-Origin Resource Sharing (CORS)

Building the SDK for Browsers

The SDK for JavaScript is provided as a JavaScript file with support included for a default set of 
services. This file is typically loaded into browser scripts using a  <script> tag that references 
the hosted SDK package. However, you may need support for services other than the default set or 
otherwise need to customize the SDK.

If you work with the SDK outside of an environment that enforces CORS in your browser and if 
you want access to all services provided by the SDK for JavaScript, you can build a custom copy of 
the SDK locally by cloning the repository and running the same build tools that build the default 
hosted version of the SDK. The following sections describe the steps to build the SDK with extra 
services and API versions.

Topics

• Using the SDK Builder to Build the SDK for JavaScript

• Using the CLI to Build the SDK for JavaScript

• Building Specific Services and API Versions

• Building the SDK as a Dependency with Browserify

Using the SDK Builder to Build the SDK for JavaScript

The easiest way to create your own build of the AWS SDK for JavaScript is to use the SDK builder 
web application at  https://sdk.amazonaws.com/builder/js. Use the SDK builder to specify services, 
and their API versions, to include in your build.

Choose Select all services or choose Select default services as a starting point from which you can 
add or remove services. Choose Development for more readable code or choose Minified to create 
a minified build to deploy. After you choose the services and versions to include, choose Build to 
build and download your custom SDK.

Using the CLI to Build the SDK for JavaScript

To build the SDK for JavaScript using the AWS CLI, you first need to clone the Git repository that 
contains the SDK source. You must have Git and Node.js installed on your computer.

Building the SDK for Browsers 63

https://sdk.amazonaws.com/builder/js


AWS SDK for JavaScript Developer Guide for SDK v2

First, clone the repository from GitHub and change directory into the directory:

git clone https://github.com/aws/aws-sdk-js.git
cd aws-sdk-js

After you clone the repository, download the dependency modules for both the SDK and build tool:

npm install

You can now build a packaged version of the SDK.

Building from the Command Line

The builder tool is in dist-tools/browser-builder.js. Run this script by typing:

node dist-tools/browser-builder.js > aws-sdk.js

This command builds the aws-sdk.js file. This file is uncompressed. By default this package includes 
only the standard set of services.

Minifying Build Output

To reduce the amount of data on the network, JavaScript files can be compressed through a 
process called minification. Minification strips comments, unnecessary spaces, and other characters 
that aid in human readability but that do not impact execution of the code. The builder tool 
can produce uncompressed or minified output. To minify your build output, set the MINIFY
environment variable:

MINIFY=1 node dist-tools/browser-builder.js > aws-sdk.js

Building Specific Services and API Versions

You can select which services to build into the SDK. To select services, specify the service names, 
delimited by commas, as parameters. For example, to build only Amazon S3 and Amazon EC2, use 
the following command:

node dist-tools/browser-builder.js s3,ec2 > aws-sdk-s3-ec2.js

Building the SDK for Browsers 64



AWS SDK for JavaScript Developer Guide for SDK v2

You can also select specific API versions of the services build by adding the version name after the 
service name. For example, to build both API versions of Amazon DynamoDB, use the following 
command:

node dist-tools/browser-builder.js dynamodb-2011-12-05,dynamodb-2012-08-10

Service identifiers and API versions are available in the service-specific configuration files at 
https://github.com/aws/aws-sdk-js/tree/master/apis.

Building All Services

You can build all services and API versions by including the all parameter:

node dist-tools/browser-builder.js all > aws-sdk-full.js

Building Specific Services

To customize the selected set of services included in the build, pass the  AWS_SERVICES
environment variable to the Browserify command that contains the list of services you want. The 
following example builds the Amazon EC2, Amazon S3, and DynamoDB services.

$ AWS_SERVICES=ec2,s3,dynamodb browserify index.js > browser-app.js

Building the SDK as a Dependency with Browserify

Node.js has a module-based mechanism for including code and functionality from third-party 
developers. This modular approach is not natively supported by JavaScript running in web 
browsers. However, with a tool called Browserify, you can use the Node.js module approach and 
use modules written for Node.js in the browser. Browserify builds the module dependencies for a 
browser script into a single, self-contained JavaScript file that you can use in the browser.

You can build the SDK as a library dependency for any browser script by using Browserify. For 
example, the following Node.js code requires the SDK:

var AWS = require('aws-sdk');
var s3 = new AWS.S3();
s3.listBuckets(function(err, data) { console.log(err, data); });

This example code can be compiled into a browser-compatible version using Browserify:

Building the SDK for Browsers 65

https://github.com/aws/aws-sdk-js/tree/master/apis
https://github.com/aws/aws-sdk-js/tree/master/apis


AWS SDK for JavaScript Developer Guide for SDK v2

$ browserify index.js > browser-app.js

The application, including its SDK dependencies, is then made available in the browser through
browser-app.js.

For more information about Browserify, see the Browserify website.

Cross-Origin Resource Sharing (CORS)

Cross-origin resource sharing, or CORS, is a security feature of modern web browsers. It enables 
web browsers to negotiate which domains can make requests of external websites or services. 
CORS is an important consideration when developing browser applications with the AWS SDK for 
JavaScript because most requests to resources are sent to an external domain, such as the endpoint 
for a web service. If your JavaScript environment enforces CORS security, you must configure CORS 
with the service.

CORS determines whether to allow sharing of resources in a cross-origin request based on:

• The specific domain that makes the request

• The type of HTTP request being made (GET, PUT, POST, DELETE and so on)

How CORS Works

In the simplest case, your browser script makes a GET request for a resource from a server in 
another domain. Depending on the CORS configuration of that server, if the request is from a 
domain that's authorized to submit GET requests, the cross-origin server responds by returning the 
requested resource.

If either the requesting domain or the type of HTTP request is not authorized, the request is 
denied. However, CORS makes it possible to preflight the request before actually submitting it. 
In this case, a preflight request is made in which the OPTIONS access request operation is sent. If 
the cross-origin server's CORS configuration grants access to the requesting domain, the server 
sends back a preflight response that lists all the HTTP request types that the requesting domain 
can make on the requested resource.

Cross-Origin Resource Sharing (CORS) 66

http://browserify.org/


AWS SDK for JavaScript Developer Guide for SDK v2

Is CORS Configuration Required

Amazon S3 buckets require CORS configuration before you can perform operations on them. 
In some JavaScript environments CORS may not be enforced and therefore configuring CORS 
is unnecessary. For example, if you host your application from an Amazon S3 bucket and access 
resources from *.s3.amazonaws.com or some other specific endpoint, your requests won't access 
an external domain. Therefore, this configuration doesn't require CORS. In this case, CORS is still 
used for services other than Amazon S3.

Configuring CORS for an Amazon S3 Bucket

You can configure an Amazon S3 bucket to use CORS in the Amazon S3 console.

1. In the Amazon S3 console, choose the bucket you want to edit.

2. Select the Permissions tab, and scoll down to the Cross-origin resource sharing (CORS)
panel.

Cross-Origin Resource Sharing (CORS) 67



AWS SDK for JavaScript Developer Guide for SDK v2

3. Choose Edit, and type your CORS configuration in the CORS Configuration Editor, then 
choose Save.

A CORS configuration is an XML file that contains a series of rules within a <CORSRule>. A 
configuration can have up to 100 rules. A rule is defined by one of the following tags:

• <AllowedOrigin>, which specifies domain origins that you allow to make cross-domain 
requests.

• <AllowedMethod>, which specifies a type of request you allow (GET, PUT, POST, DELETE, HEAD) 
in cross-domain requests.

• <AllowedHeader>, which specifies the headers allowed in a preflight request.

For sample configurations, see How Do I Configure CORS on My Bucket? in the Amazon Simple 
Storage Service User Guide.

CORS Configuration Example

The following CORS configuration sample allows a user to view, add, remove, or update objects 
inside of a bucket from the domain example.org, though it is recommended that you scope the
<AllowedOrigin> to the domain of your website. You can specify "*" to allow any origin.

Important

In the new S3 console, the CORS configuration must be JSON.

Cross-Origin Resource Sharing (CORS) 68

https://docs.aws.amazon.com/AmazonS3/latest/dev/cors.html#how-do-i-enable-cors


AWS SDK for JavaScript Developer Guide for SDK v2

XML

<?xml version="1.0" encoding="UTF-8"?>
<CORSConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/"> 
  <CORSRule> 
    <AllowedOrigin>https://example.org</AllowedOrigin> 
    <AllowedMethod>HEAD</AllowedMethod> 
    <AllowedMethod>GET</AllowedMethod> 
    <AllowedMethod>PUT</AllowedMethod> 
    <AllowedMethod>POST</AllowedMethod> 
    <AllowedMethod>DELETE</AllowedMethod> 
    <AllowedHeader>*</AllowedHeader> 
    <ExposeHeader>ETag</ExposeHeader> 
    <ExposeHeader>x-amz-meta-custom-header</ExposeHeader> 
  </CORSRule>
</CORSConfiguration>

JSON

[ 
    { 
        "AllowedHeaders": [ 
            "*" 
        ], 
        "AllowedMethods": [ 
            "HEAD", 
            "GET", 
            "PUT", 
            "POST", 
            "DELETE" 
        ], 
        "AllowedOrigins": [ 
            "https://www.example.org" 
        ], 
        "ExposeHeaders": [ 
             "ETag", 
             "x-amz-meta-custom-header"] 
    }
]

Cross-Origin Resource Sharing (CORS) 69



AWS SDK for JavaScript Developer Guide for SDK v2

This configuration does not authorize the user to perform actions on the bucket. It enables the 
browser's security model to allow a request to Amazon S3. Permissions must be configured 
through bucket permissions or IAM role permissions.

You can use ExposeHeader to let the SDK read response headers returned from Amazon S3. For 
example, if you want to read the ETag header from a PUT or multipart upload, you need to include 
the ExposeHeader tag in your configuration, as shown in the previous example. The SDK can only 
access headers that are exposed through CORS configuration. If you set metadata on the object, 
values are returned as headers with the prefix x-amz-meta-, such as x-amz-meta-my-custom-
header, and must also be exposed in the same way.

Bundling Applications with Webpack

Web applications in browser scripts or Node.js use of code modules creates dependencies. These 
code modules can have dependencies of their own, resulting in a collection of interconnected 
modules that your application requires to function. To manage dependencies, you can use a 
module bundler like webpack.

The webpack module bundler parses your application code, searching for import or require
statements, to create bundles that contain all the assets your application needs so that the assets 
can be easily served through a webpage. The SDK for JavaScript can be included in webpack as one 
of the dependencies to include in the output bundle.

For more information about webpack, see the webpack module bundler on GitHub.

Installing Webpack

To install the webpack module bundler, you must first have npm, the Node.js package manager, 
installed. Type the following command to install the webpack CLI and JavaScript module.

npm install webpack

You may also need to install a webpack plugin that allows it to load JSON files. Type the following 
command to install the JSON loader plugin.

npm install json-loader

Bundling with Webpack 70

https://webpack.github.io/


AWS SDK for JavaScript Developer Guide for SDK v2

Configuring Webpack

By default, webpack searches for a JavaScript file named webpack.config.js in your 
project's root directory. This file specifies your configuration options. Here is an example of a
webpack.config.js configuration file.

// Import path for resolving file paths
var path = require('path');
module.exports = { 
  // Specify the entry point for our app. 
  entry: [ 
    path.join(__dirname, 'browser.js') 
  ], 
  // Specify the output file containing our bundled code 
  output: { 
    path: __dirname, 
    filename: 'bundle.js' 
  }, 
  module: { 
    /** 
      * Tell webpack how to load 'json' files.  
      * When webpack encounters a 'require()' statement 
      * where a 'json' file is being imported, it will use 
      * the json-loader.   
      */ 
    loaders: [ 
      { 
        test: /\.json$/,  
        loaders: ['json'] 
      } 
    ] 
  }
}

In this example, browser.js is specified as the entry point. The entry point is the file webpack 
uses to begin searching for imported modules. The file name of the output is specified as
bundle.js. This output file will contain all the JavaScript the application needs to run. If the code 
specified in the entry point imports or requires other modules, such as the SDK for JavaScript, that 
code is bundled without needing to specify it in the configuration.

The configuration in the json-loader plugin that was installed earlier specifies to webpack how 
to import JSON files. By default, webpack only supports JavaScript but uses loaders to add support 

Configuring Webpack 71



AWS SDK for JavaScript Developer Guide for SDK v2

for importing other file types. Because the SDK for JavaScript makes extensive use of JSON files, 
webpack throws an error when generating the bundle if json-loader isn't included.

Running Webpack

To build an application to use webpack, add the following to the scripts object in your
package.json file.

"build": "webpack"

Here is an example package.json that demonstrates adding webpack.

{ 
  "name": "aws-webpack", 
  "version": "1.0.0", 
  "description": "", 
  "main": "index.js", 
  "scripts": { 
    "test": "echo \"Error: no test specified\" && exit 1", 
    "build": "webpack" 
  }, 
  "author": "", 
  "license": "ISC", 
  "dependencies": { 
    "aws-sdk": "^2.6.1" 
  }, 
  "devDependencies": { 
    "json-loader": "^0.5.4", 
    "webpack": "^1.13.2" 
  }
}

To build your application, type the following command.

npm run build

The webpack module bundler then generates the JavaScript file you specified in your project's root 
directory.

Running Webpack 72



AWS SDK for JavaScript Developer Guide for SDK v2

Using the Webpack Bundle

To use the bundle in a browser script, you can incorporate the bundle using a <script> tag as 
shown in the following example.

<!DOCTYPE html>
<html> 
    <head> 
        <title>AWS SDK with webpack</title> 
    </head>  
    <body> 
        <div id="list"></div> 
        <script src="bundle.js"></script> 
    </body>
</html>

Importing Individual Services

One of the benefits of webpack is that it parses the dependencies in your code and bundles only 
the code your application needs. If you are using the SDK for JavaScript, bundling only the parts of 
the SDK actually used by your application can reduce the size of the webpack output considerably.

Consider the following example of the code used to create an Amazon S3 service object.

// Import the AWS SDK
var AWS = require('aws-sdk');

// Set credentials and Region
// This can also be done directly on the service client
AWS.config.update({region: 'us-west-1', credentials: {YOUR_CREDENTIALS}});

var s3 = new AWS.S3({apiVersion: '2006-03-01'});

The require() function specifies the entire SDK. A webpack bundle generated with this code 
would include the full SDK but the full SDK is not required when only the Amazon S3 client class 
is used. The size of the bundle would be substantially smaller if only the portion of the SDK you 
require for the Amazon S3 service was included. Even setting the configuration doesn't require the 
full SDK because you can set the configuration data on the Amazon S3 service object.

Here is what the same code looks like when it includes only the Amazon S3 portion of the SDK.

Using the Webpack Bundle 73



AWS SDK for JavaScript Developer Guide for SDK v2

// Import the Amazon S3 service client
var S3 = require('aws-sdk/clients/s3'); 
  
// Set credentials and Region
var s3 = new S3({ 
    apiVersion: '2006-03-01', 
    region: 'us-west-1',  
    credentials: {YOUR_CREDENTIALS} 
  });

Bundling for Node.js

You can use webpack to generate bundles that run in Node.js by specifying it as a target in the 
configuration.

target: "node"

This is useful when running a Node.js application in an environment where disk space is limited. 
Here is an example webpack.config.js configuration with Node.js specified as the output 
target.

// Import path for resolving file paths
var path = require('path');
module.exports = { 
  // Specify the entry point for our app 
  entry: [ 
    path.join(__dirname, 'node.js') 
  ], 
  // Specify the output file containing our bundled code 
  output: { 
    path: __dirname, 
    filename: 'bundle.js' 
  }, 
  // Let webpack know to generate a Node.js bundle 
   target: "node", 
  module: { 
    /** 
      * Tell webpack how to load JSON files. 
      * When webpack encounters a 'require()' statement 
      * where a JSON file is being imported, it will use 
      * the json-loader 

Bundling for Node.js 74



AWS SDK for JavaScript Developer Guide for SDK v2

      */ 
    loaders: [ 
      { 
        test: /\.json$/,  
        loaders: ['json'] 
      } 
    ] 
  }
}

Bundling for Node.js 75



AWS SDK for JavaScript Developer Guide for SDK v2

Working with Services in the SDK for JavaScript
The AWS SDK for JavaScript provides access to services that it supports through a collection of 
client classes. From these client classes, you create service interface objects, commonly called
service objects. Each supported AWS service has one or more client classes that offer low-level 
APIs for using service features and resources. For example, Amazon DynamoDB APIs are available 
through the AWS.DynamoDB class.

The services exposed through the SDK for JavaScript follow the request-response pattern to 
exchange messages with calling applications. In this pattern, the code invoking a service submits 
an HTTP/HTTPS request to an endpoint for the service. The request contains parameters needed 
to successfully invoke the specific feature being called. The service that is invoked generates 
a response that is sent back to the requestor. The response contains data if the operation was 
successful or error information if the operation was unsuccessful.

Invoking an AWS service includes the full request and response lifecycle of an operation on a 
service object, including any retries that are attempted. A request is encapsulated in the SDK by 
the AWS.Request object. The response is encapsulated in the SDK by the AWS.Response object, 
which is provided to the requestor through one of several techniques, such as a callback function or 
a JavaScript promise.

76



AWS SDK for JavaScript Developer Guide for SDK v2

Topics

• Creating and Calling Service Objects

• Logging AWS SDK for JavaScript Calls

• Calling Services Asychronously

• Using the Response Object

• Working with JSON

Creating and Calling Service Objects

The JavaScript API supports most available AWS services. Each service class in the JavaScript API 
provides access to every API call in its service. For more information on service classes, operations, 
and parameters in the JavaScript API, see the API reference.

When using the SDK in Node.js, you add the SDK package to your application using require, 
which provides support for all current services.

var AWS = require('aws-sdk');

When using the SDK with browser JavaScript, you load the SDK package to your browser scripts 
using the AWS-hosted SDK package. To load the SDK package, add the following <script>
element:

<script src="https://sdk.amazonaws.com/js/aws-sdk-SDK_VERSION_NUMBER.min.js"></script>

To find the current SDK_VERSION_NUMBER, see the API Reference for the SDK for JavaScript at
AWS SDK for JavaScript API Reference Guide.

The default hosted SDK package provides support for a subset of the available AWS services. For 
a list of the default services in the hosted SDK package for the browser, see Supported Services in 
the API Reference. You can use the SDK with other services if CORS security checking is disabled. In 
this case, you can build a custom version of the SDK to include the additional services you require. 
For more information on building a custom version of the SDK, see Building the SDK for Browsers.

Creating and Calling Service Objects 77

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/index.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/#Supported_Services


AWS SDK for JavaScript Developer Guide for SDK v2

Requiring Individual Services

Requiring the SDK for JavaScript as shown previously includes the entire SDK into your code. 
Alternately, you can choose to require only the individual services used by your code. Consider the 
following code used to create an Amazon S3 service object.

// Import the AWS SDK
var AWS = require('aws-sdk');

// Set credentials and Region
// This can also be done directly on the service client
AWS.config.update({region: 'us-west-1', credentials: {YOUR_CREDENTIALS}});

var s3 = new AWS.S3({apiVersion: '2006-03-01'});

In the previous example, the require function specifies the entire SDK. The amount of code to 
transport over the network as well as the memory overhead of your code would be substantially 
smaller if only the portion of the SDK you require for the Amazon S3 service was included. To 
require an individual service, call the require function as shown, including the service constructor 
in all lower case.

require('aws-sdk/clients/SERVICE');

Here is what the code to create the previous Amazon S3 service object looks like when it includes 
only the Amazon S3 portion of the SDK.

// Import the Amazon S3 service client
var S3 = require('aws-sdk/clients/s3'); 
  
// Set credentials and Region
var s3 = new S3({ 
    apiVersion: '2006-03-01', 
    region: 'us-west-1',  
    credentials: {YOUR_CREDENTIALS} 
  });

You can still access the global AWS namespace without every service attached to it.

require('aws-sdk/global');

Requiring Individual Services 78



AWS SDK for JavaScript Developer Guide for SDK v2

This is a useful technique when applying the same configuration across multiple individual services, 
for example to provide the same credentials to all services. Requiring individual services should 
reduce loading time and memory consumption in Node.js. When done along with a bundling tool 
such as Browserify or webpack, requiring individual services results in the SDK being a fraction of 
the full size. This helps with memory or disk-space constrained environments such as an IoT device 
or in a Lambda function.

Creating Service Objects

To access service features through the JavaScript API, you first create a service object through 
which you access a set of features provided by the underlying client class. Generally there is one 
client class provided for each service; however, some services divide access to their features among 
multiple client classes.

To use a feature, you must create an instance of the class that provides access to that feature. The 
following example shows creating a service object for DynamoDB from the AWS.DynamoDB client 
class.

var dynamodb = new AWS.DynamoDB({apiVersion: '2012-08-10'});

By default, a service object is configured with the global settings also used to configure the SDK. 
However, you can configure a service object with runtime configuration data that is specific to that 
service object. Service-specific configuration data is applied after applying the global configuration 
settings.

In the following example, an Amazon EC2 service object is created with configuration for a specific 
Region but otherwise uses the global configuration.

var ec2 = new AWS.EC2({region: 'us-west-2', apiVersion: '2014-10-01'});

In addition to supporting service-specific configuration applied to an individual service object, you 
can also apply service-specific configuration to all newly created service objects of a given class. 
For example, to configure all service objects created from the Amazon EC2 class to use the US West 
(Oregon) (us-west-2) Region, add the following to the AWS.config global configuration object.

AWS.config.ec2 = {region: 'us-west-2', apiVersion: '2016-04-01'};

Creating Service Objects 79



AWS SDK for JavaScript Developer Guide for SDK v2

Locking the API Version of a Service Object

You can lock a service object to a specific API version of a service by specifying the apiVersion
option when creating the object. In the following example, a DynamoDB service object is created 
that is locked to a specific API version.

var dynamodb = new AWS.DynamoDB({apiVersion: '2011-12-05'});

For more information about locking the API version of a service object, see Locking API Versions.

Specifying Service Object Parameters

When calling a method of a service object, pass parameters in JSON as required by the API. 
For example, in Amazon S3, to get an object for a specified bucket and key, pass the following 
parameters to the getObject method. For more information about passing JSON parameters, see
Working with JSON.

s3.getObject({Bucket: 'bucketName', Key: 'keyName'});

For more information about Amazon S3 parameters, see Class: AWS.S3 in the API reference.

In addition, you can bind values to individual parameters when creating a service object using the
params parameter. The value of the params parameter of service objects is a map that specifies 
one or more of the parameter values defined by the service object. The following example shows 
the Bucket parameter of an Amazon S3 service object being bound to a bucket named myBucket.

var s3bucket = new AWS.S3({params: {Bucket: 'myBucket'}, apiVersion: '2006-03-01' });

By binding the service object to a bucket, the s3bucket service object treats the myBucket
parameter value as a default value that no longer needs to be specified for subsequent operations. 
Any bound parameter values are ignored when using the object for operations where the 
parameter value isn't applicable. You can override this bound parameter when making calls on the 
service object by specifying a new value.

var s3bucket = new AWS.S3({ params: {Bucket: 'myBucket'}, apiVersion: '2006-03-01' });
s3bucket.getObject({Key: 'keyName'});
// ...
s3bucket.getObject({Bucket: 'myOtherBucket', Key: 'keyOtherName'});

Locking the API Version of a Service Object 80

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html


AWS SDK for JavaScript Developer Guide for SDK v2

Details about available parameters for each method are found in the API reference.

Logging AWS SDK for JavaScript Calls

The AWS SDK for JavaScript is instrumented with a built-in logger so you can log API calls you 
make with the SDK for JavaScript.

To turn on the logger and print log entries in the console, add the following statement to your 
code.

AWS.config.logger = console;

Here is an example of the log output.

[AWS s3 200 0.185s 0 retries] createMultipartUpload({ Bucket: 'js-sdk-test-bucket', 
 Key: 'issues_1704' })

Using a Third-Party Logger

You can also use a third-party logger, provided it has log() or write() operations to write to a 
log file or server. You must install and set up your custom logger as instructed before you can use it 
with the SDK for JavaScript.

One such logger you can use in either browser scripts or in Node.js is logplease. In Node.js, you can 
configure logplease to write log entries to a log file. You can also use it with webpack.

When using a third-party logger, set all options before assigning the logger to
AWS.Config.logger. For example, the following specifies an external log file and sets the log 
level for logplease

// Require AWS Node.js SDK
const AWS = require('aws-sdk')
// Require logplease
const logplease = require('logplease');
// Set external log file option
logplease.setLogfile('debug.log');
// Set log level
logplease.setLogLevel('DEBUG');
// Create logger
const logger = logplease.create('logger name');
// Assign logger to SDK

Logging AWS SDK for JavaScript Calls 81



AWS SDK for JavaScript Developer Guide for SDK v2

AWS.config.logger = logger;

For more information about logplease, see the logplease Simple JavaScript Logger on GitHub.

Calling Services Asychronously

All requests made through the SDK are asynchronous. This is important to keep in mind when 
writing browser scripts. JavaScript running in a web browser typically has just a single execution 
thread. After making an asynchronous call to an AWS service, the browser script continues running 
and in the process can try to execute code that depends on that asynchronous result before it 
returns.

Making asynchronous calls to an AWS service includes managing those calls so your code doesn't 
try to use data before the data is available. The topics in this section explain the need to manage 
asynchronous calls and detail different techniques you can use to manage them.

Topics

• Managing Asychronous Calls

• Using an Anonymous Callback Function

• Using a Request Object Event Listener

• Using async/await

• Using JavaScript Promises

Managing Asychronous Calls

For example, the home page of an e-commerce website lets returning customers sign in. Part of 
the benefit for customers who sign in is that, after signing in, the site then customizes itself to 
their particular preferences. To make this happen:

1. The customer must log in and be validated with their sign-in credentials.

2. The customer's preferences are requested from a customer database.

3. The database provides the customer's preferences that are used to customize the site before the 
page loads.

If these tasks execute synchronously, then each must finish before the next can start. The web 
page would be unable to finish loading until the customer preferences return from the database. 

Calling Services Asychronously 82

https://github.com/haadcode/logplease


AWS SDK for JavaScript Developer Guide for SDK v2

However, after the database query is sent to the server, receipt of the customer data can be 
delayed or even fail due to network bottlenecks, exceptionally high database traffic, or a poor 
mobile device connection.

To keep the website from freezing under those conditions, call the database asychronously. After 
the database call executes, sending your asynchronous request, your code continues to execute 
as expected. If you don't properly manage the response of an asynchronous call, your code can 
attempt to use information it expects back from the database when that data isn't available yet.

Using an Anonymous Callback Function

Each service object method that creates an AWS.Request object can accept an anonymous 
callback function as the last parameter. The signature of this callback function is:

function(error, data) { 
    // callback handling code
}

This callback function executes when either a successful response or error data returns. If the 
method call succeeds, the contents of the response are available to the callback function in the
data parameter. If the call doesn't succeed, the details about the failure are provided in the error
parameter.

Using a Callback Function 83



AWS SDK for JavaScript Developer Guide for SDK v2

Typically the code inside the callback function tests for an error, which it processes if one is 
returned. If an error is not returned, the code then retrieves the data in the response from the data
parameter. The basic form of the callback function looks like this example.

function(error, data) { 
    if (error) { 
        // error handling code 
        console.log(error); 
    } else { 
        // data handling code 
        console.log(data); 
    }
}

In the previous example, the details of either the error or the returned data are logged to the 
console. Here is an example that shows a callback function passed as part of calling a method on a 
service object.

new AWS.EC2({apiVersion: '2014-10-01'}).describeInstances(function(error, data) { 
  if (error) { 
    console.log(error); // an error occurred 
  } else { 
    console.log(data); // request succeeded 
  }
});

Accessing the Request and Response Objects

Within the callback function, the JavaScript keyword this refers to the underlying AWS.Response
object for most services. In the following example, the httpResponse property of an
AWS.Response object is used within a callback function to log the raw response data and headers 
to help with debugging.

new AWS.EC2({apiVersion: '2014-10-01'}).describeInstances(function(error, data) { 
  if (error) { 
    console.log(error); // an error occurred 
    // Using this keyword to access AWS.Response object and properties 
    console.log("Response data and headers: " + JSON.stringify(this.httpResponse)); 
  } else { 
    console.log(data); // request succeeded 
  }

Using a Callback Function 84



AWS SDK for JavaScript Developer Guide for SDK v2

});

In addition, because the AWS.Response object has a Request property that contains the
AWS.Request that was sent by the original method call, you can also access the details of the 
request that was made.

Using a Request Object Event Listener

If you do not create and pass an anonymous callback function as a parameter when you call a 
service object method, the method call generates an AWS.Request object that must be manually 
sent using its send method.

To process the response, you must create an event listener for the AWS.Request object to 
register a callback function for the method call. The following example shows how to create the
AWS.Request object for calling a service object method and the event listener for the successful 
return.

// create the AWS.Request object
var request = new AWS.EC2({apiVersion: '2014-10-01'}).describeInstances();

// register a callback event handler
request.on('success', function(response) { 
  // log the successful data response 
  console.log(response.data);  
});

// send the request
request.send();

After the send method on the AWS.Request object is called, the event handler executes when the 
service object receives an AWS.Response object.

For more information about the AWS.Request object, see Class: AWS.Request in the API 
Reference. For more information about the AWS.Response object, see Using the Response Object
or Class: AWS.Response in the API Reference.

Chaining Multiple Callbacks

You can register multiple callbacks on any request object. Multiple callbacks can be registered 
for different events or the same event. Also, you can chain callbacks as shown in the following 
example.

Using a Request Object Event Listener 85

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/Request.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/Response.html


AWS SDK for JavaScript Developer Guide for SDK v2

request. 
  on('success', function(response) { 
    console.log("Success!"); 
  }). 
  on('error', function(response) { 
    console.log("Error!"); 
  }). 
  on('complete', function() { 
    console.log("Always!"); 
  }). 
  send();

Request Object Completion Events

The AWS.Request object raises these completion events based on the response of each service 
operation method:

• success

• error

• complete

You can register a callback function in response to any of these events. For a complete list of all 
request object events, see Class: AWS.Request in the API Reference.

The success Event

The success event is raised upon a successful response received from the service object. Here is 
how you register a callback function for this event.

request.on('success', function(response) {  
  // event handler code
});

The response provides a data property that contains the serialized response data from the service. 
For example, the following call to the listBuckets method of the Amazon S3 service object

s3.listBuckets.on('success', function(response) { 
  console.log(response.data);
}).send();

Using a Request Object Event Listener 86

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/Request.html


AWS SDK for JavaScript Developer Guide for SDK v2

returns the response and then prints the following data property contents to the console.

{ Owner: { ID: '...', DisplayName: '...' }, 
  Buckets:  
   [ { Name: 'someBucketName', CreationDate: someCreationDate }, 
     { Name: 'otherBucketName', CreationDate: otherCreationDate } ], 
  RequestId: '...' }

The error Event

The error event is raised upon an error response received from the service object. Here is how you 
register a callback function for this event.

request.on('error', function(error, response) {  
  // event handling code
});

When the error event is raised, the value of the response's data property is null and the error
property contains the error data. The associated error object is passed as the first parameter to 
the registered callback function. For example, the following code:

s3.config.credentials.accessKeyId = 'invalid';
s3.listBuckets().on('error', function(error, response) { 
  console.log(error);
}).send();

returns the error and then prints the following error data to the console.

{ code: 'Forbidden', message: null }

The complete Event

The complete event is raised when a service object call has finished, regardless of whether the call 
results in success or error. Here is how you register a callback function for this event.

request.on('complete', function(response) {  
  // event handler code
});

Use the complete event callback to handle any request cleanup that must execute regardless 
of success or error. If you use response data inside a callback for the complete event, first check 

Using a Request Object Event Listener 87



AWS SDK for JavaScript Developer Guide for SDK v2

the response.data or response.error properties before attempting to access either one, as 
shown in the following example.

request.on('complete', function(response) { 
  if (response.error) { 
    // an error occurred, handle it 
  } else { 
    // we can use response.data here 
  }
}).send();

Request Object HTTP Events

The AWS.Request object raises these HTTP events based on the response of each service 
operation method:

• httpHeaders

• httpData

• httpUploadProgress

• httpDownloadProgress

• httpError

• httpDone

You can register a callback function in response to any of these events. For a complete list of all 
request object events, see Class: AWS.Request in the API Reference.

The httpHeaders Event

The httpHeaders event is raised when headers are sent by the remote server. Here is how you 
register a callback function for this event.

request.on('httpHeaders', function(statusCode, headers, response) { 
  // event handling code
});

The statusCode parameter to the callback function is the HTTP status code. The headers
parameter contains the response headers.

Using a Request Object Event Listener 88

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/Request.html


AWS SDK for JavaScript Developer Guide for SDK v2

The httpData Event

The httpData event is raised to stream response data packets from the service. Here is how you 
register a callback function for this event.

request.on('httpData', function(chunk, response) { 
  // event handling code
});

This event is typically used to receive large responses in chunks when loading the entire response 
into memory is not practical. This event has an additional chunk parameter that contains a portion 
of the actual data from the server.

If you register a callback for the httpData event, the data property of the response contains the 
entire serialized output for the request. You must remove the default httpData listener if you 
don't have the extra parsing and memory overhead for the built-in handlers.

The httpUploadProgress and httpDownloadProgress Events

The httpUploadProgress event is raised when the HTTP request has uploaded more data. 
Similarly, the httpDownloadProgress event is raised when the HTTP request has downloaded 
more data. Here is how you register a callback function for these events.

request.on('httpUploadProgress', function(progress, response) { 
  // event handling code
})
.on('httpDownloadProgress', function(progress, response) { 
  // event handling code
});

The progress parameter to the callback function contains an object with the loaded and total 
bytes of the request.

The httpError Event

The httpError event is raised when the HTTP request fails. Here is how you register a callback 
function for this event.

request.on('httpError', function(error, response) { 
  // event handling code
});

Using a Request Object Event Listener 89



AWS SDK for JavaScript Developer Guide for SDK v2

The error parameter to the callback function contains the error that was thrown.

The httpDone Event

The httpDone event is raised when the server finishes sending data. Here is how you register a 
callback function for this event.

request.on('httpDone', function(response) { 
  // event handling code
});

Using async/await

You can use the async/await pattern in your calls to the AWS SDK for JavaScript. Most functions 
that take a callback do not return a promise. Since you only use await functions that return a 
promise, to use the async/await pattern you need to chain the .promise() method to the end 
of your call, and remove the callback.

The following example uses async/await to list all of your Amazon DynamoDB tables in us-
west-2.

var AWS = require("aws-sdk");
//Create an Amazon DynamoDB client service object.
dbClient = new AWS.DynamoDB({ region: "us-west-2" });
// Call DynamoDB to list existing tables
const run = async () => { 
  try { 
    const results = await dbClient.listTables({}).promise(); 
    console.log(results.TableNames.join("\n")); 
  } catch (err) { 
    console.error(err); 
  }
};
run();

Note

Not all browsers support async/await. See Async functions for a list of browsers with async/
await support.

Using async/await 90

https://caniuse.com/#feat=async-functions


AWS SDK for JavaScript Developer Guide for SDK v2

Using JavaScript Promises

The AWS.Request.promise method provides a way to call a service operation and manage 
asynchronous flow instead of using callbacks. In Node.js and browser scripts, an AWS.Request
object is returned when a service operation is called without a callback function. You can call the 
request's send method to make the service call.

However, AWS.Request.promise immediately starts the service call and returns a promise that is 
either fulfilled with the response data property or rejected with the response error property.

var request = new AWS.EC2({apiVersion: '2014-10-01'}).describeInstances();

// create the promise object
var promise = request.promise();

// handle promise's fulfilled/rejected states
promise.then( 
  function(data) { 
    /* process the data */ 
  }, 
  function(error) { 
    /* handle the error */ 
  }
);

The next example returns a promise that's fulfilled with a data object, or rejected with an error
object. Using promises, a single callback isn't responsible for detecting errors. Instead, the correct 
callback is called based on the success or failure of a request.

var s3 = new AWS.S3({apiVersion: '2006-03-01', region: 'us-west-2'});
var params = { 
  Bucket: 'bucket', 
  Key: 'example2.txt', 
  Body: 'Uploaded text using the promise-based method!'
};
var putObjectPromise = s3.putObject(params).promise();
putObjectPromise.then(function(data) { 
  console.log('Success');
}).catch(function(err) { 
  console.log(err);
});

Using Promises 91



AWS SDK for JavaScript Developer Guide for SDK v2

Coordinating Multiple Promises

In some situations, your code must make multiple asynchronous calls that require action only when 
they have all returned successfully. If you manage those individual asynchronous method calls with 
promises, you can create an additional promise that uses the all method. This method fulfills this 
umbrella promise if and when the array of promises that you pass into the method are fulfilled. 
The callback function is passed an array of the values of the promises passed to the all method.

In the following example, an AWS Lambda function must make three asynchronous calls to 
Amazon DynamoDB but can only complete after the promises for each call are fulfilled.

Promise.all([firstPromise, secondPromise, thirdPromise]).then(function(values) { 
   
  console.log("Value 0 is " + values[0].toString); 
  console.log("Value 1 is " + values[1].toString); 
  console.log("Value 2 is " + values[2].toString); 

  // return the result to the caller of the Lambda function 
  callback(null, values);
});

Browser and Node.js Support for Promises

Support for native JavaScript promises (ECMAScript 2015) depends on the JavaScript engine and 
version in which your code executes. To help determine the support for JavaScript promises in each 
environment where your code needs to run, see the ECMAScript Compatability Table on GitHub.

Using Other Promise Implementations

In addition to the native promise implementation in ECMAScript 2015, you can also use third-party 
promise libraries, including:

• bluebird

• RSVP

• Q

These optional promise libraries can be useful if you need your code to run in environments that 
don't support the native promise implementation in ECMAScript 5 and ECMAScript 2015.

Using Promises 92

https://compat-table.github.io/compat-table/es6/
http://bluebirdjs.com
https://github.com/tildeio/rsvp.js/
https://github.com/kriskowal/q


AWS SDK for JavaScript Developer Guide for SDK v2

To use a third-party promise library, set a promises dependency on the SDK by calling the
setPromisesDependency method of the global configuration object. In browser scripts, make 
sure to load the third-party promise library before loading the SDK. In the following example, the 
SDK is configured to use the implementation in the bluebird promise library.

AWS.config.setPromisesDependency(require('bluebird'));

To return to using the native promise implementation of the JavaScript engine, call
setPromisesDependency again, passing a null instead of a library name.

Using the Response Object

After a service object method has been called, it returns an AWS.Response object by passing it 
to your callback function. You access the contents of the response through the properties of the
AWS.Response object. There are two properties of the AWS.Response object you use to access 
the contents of the response:

• data property

• error property

When using the standard callback mechanism, these two properties are provided as parameters on 
the anonymous callback function as shown in the following example.

function(error, data) { 
    if (error) { 
        // error handling code 
        console.log(error); 
    } else { 
        // data handling code 
        console.log(data); 
    }
}

Accessing Data Returned in the Response Object

The data property of the AWS.Response object contains the serialized data returned by the 
service request. When the request is successful, the data property contains an object that contains 
a map to the data returned. The data property can be null if an error occurs.

Using the Response Object 93



AWS SDK for JavaScript Developer Guide for SDK v2

Here is an example of calling the getItem method of a DynamoDB table to retrieve the file name 
of an image file to use as part of a game.

// Initialize parameters needed to call DynamoDB
var slotParams = { 
    Key : {'slotPosition' : {N: '0'}}, 
    TableName : 'slotWheels', 
    ProjectionExpression: 'imageFile'
};

// prepare request object for call to DynamoDB
var request = new AWS.DynamoDB({region: 'us-west-2', apiVersion: 
 '2012-08-10'}).getItem(slotParams);
// log the name of the image file to load in the slot machine
request.on('success', function(response) { 
    // logs a value like "cherries.jpg" returned from DynamoDB 
    console.log(response.data.Item.imageFile.S);
});
// submit DynamoDB request
request.send();

For this example, the DynamoDB table is a lookup of images that show the results of a slot 
machine pull as specified by the parameters in slotParams.

Upon a successful call of the getItem method, the data property of the AWS.Response object 
contains an Item object returned by DynamoDB. The returned data is accessed according to the 
request's ProjectionExpression parameter, which in this case means the imageFile member 
of the Item object. Because the imageFile member holds a string value, you access the file name 
of the image itself through the value of the S child member of imageFile.

Paging Through Returned Data

Sometimes the contents of the data property returned by a service request span multiple pages. 
You can access the next page of data by calling the response.nextPage method. This method 
sends a new request. The response from the request can be captured either with a callback or with 
success and error listeners.

You can check to see if the data returned by a service request has additional pages of data by 
calling the response.hasNextPage method. This method returns a boolean to indicate whether 
calling response.nextPage returns additional data.

Paging Through Returned Data 94



AWS SDK for JavaScript Developer Guide for SDK v2

s3.listObjects({Bucket: 'bucket'}).on('success', function handlePage(response) { 
    // do something with response.data 
    if (response.hasNextPage()) { 
        response.nextPage().on('success', handlePage).send(); 
    }
}).send();

Accessing Error Information from a Response Object

The error property of the AWS.Response object contains the available error data in the event of 
a service error or transfer error. The error returned takes the following form.

{ code: 'SHORT_UNIQUE_ERROR_CODE', message: 'a descriptive error message' }

In the case of an error, the value of the data property is null. If you handle events that can be in 
a failure state, always check whether the error property was set before attempting to access the 
value of the data property.

Accessing the Originating Request Object

The request property provides access to the originating AWS.Request object. It can be useful to 
refer to the original AWS.Request object to access the original parameters it sent. In the following 
example, the request property is used to access the Key parameter of the original service request.

s3.getObject({Bucket: 'bucket', Key: 'key'}).on('success', function(response) { 
   console.log("Key was", response.request.params.Key);
}).send();

Working with JSON

JSON is a format for data exchange that is both human and machine-readable. While the name 
JSON is an acronym for JavaScript Object Notation, the format of JSON is independent of any 
programming language.

The SDK for JavaScript uses JSON to send data to service objects when making requests and 
receives data from service objects as JSON. For more information about JSON, see json.org.

Accessing Error Information from a Response Object 95

https://json.org


AWS SDK for JavaScript Developer Guide for SDK v2

JSON represents data in two ways:

• An object, which is an unordered collection of name-value pairs. An object is defined within 
left ({) and right (}) braces. Each name-value pair begins with the name, followed by a colon, 
followed by the value. Name-value pairs are comma separated.

• An array, which is an ordered collection of values. An array is defined within left ([) and right (]) 
brackets. Items in the array are comma separated.

Here is an example of a JSON object that contains an array of objects in which the objects 
represent cards in a card game. Each card is defined by two name-value pairs, one that specifies 
a unique value to identify that card and another that specifies a URL that points to the 
corresponding card image.

var cards = [{"CardID":"defaultname", "Image":"defaulturl"}, 
  {"CardID":"defaultname", "Image":"defaulturl"}, 
  {"CardID":"defaultname", "Image":"defaulturl"}, 
  {"CardID":"defaultname", "Image":"defaulturl"}, 
  {"CardID":"defaultname", "Image":"defaulturl"}];

JSON as Service Object Parameters

Here is an example of simple JSON used to define the parameters of a call to a Lambda service 
object.

var pullParams = { 
   FunctionName : 'slotPull', 
   InvocationType : 'RequestResponse', 
   LogType : 'None'
};

JSON as Service Object Parameters 96



AWS SDK for JavaScript Developer Guide for SDK v2

The pullParams object is defined by three name-value pairs, separated by commas within the 
left and right braces. When providing parameters to a service object method call, the names are 
determined by the parameter names for the service object method you plan to call. When invoking 
a Lambda function, FunctionName, InvocationType, and LogType are the parameters used to 
call the invoke method on a Lambda service object.

When passing parameters to a service object method call, provide the JSON object to the method 
call, as shown in the following example of invoking a Lambda function.

lambda = new AWS.Lambda({region: 'us-west-2', apiVersion: '2015-03-31'});
// create JSON object for service call parameters
var pullParams = { 
   FunctionName : 'slotPull', 
   InvocationType : 'RequestResponse', 
   LogType : 'None'
};                 
// invoke Lambda function, passing JSON object
lambda.invoke(pullParams, function(err, data) { 
   if (err) { 
      console.log(err); 
   } else { 
      console.log(data); 
   }
});

Returning Data as JSON

JSON provides a standard way to pass data between parts of an application that need to send 
several values at the same time. The methods of client classes in the API commonly return JSON 
in the data parameter passed to their callback functions. For example, here is a call to the
getBucketCors method of the Amazon S3 client class.

// call S3 to retrieve CORS configuration for selected bucket
s3.getBucketCors(bucketParams, function(err, data) { 
  if (err) { 
    console.log(err); 
  } else if (data) { 
    console.log(JSON.stringify(data)); 
  }
});

Returning Data as JSON 97



AWS SDK for JavaScript Developer Guide for SDK v2

The value of data is a JSON object, in this example JSON that describes the current CORS 
configuration for a specified Amazon S3 bucket.

{ 
   "CORSRules": [ 
      { 
          "AllowedHeaders":["*"], 
          "AllowedMethods":["POST","GET","PUT","DELETE","HEAD"], 
          "AllowedOrigins":["*"], 
          "ExposeHeaders":[], 
          "MaxAgeSeconds":3000 
      } 
   ]
}

Returning Data as JSON 98



AWS SDK for JavaScript Developer Guide for SDK v2

SDK for JavaScript Code Examples

The topics in this section contain examples of how to use the AWS SDK for JavaScript with the APIs 
of various services to carry out common tasks.

Find the source code for these examples and others in the AWS documentation code examples 
repository on GitHub. To propose a new code example for the AWS documentation team to 
consider producing, create a new request. The team is looking to produce code examples that cover 
broader scenarios and use cases, versus simple code snippets that cover only individual API calls. 
For instructions, see the Authoring code section in the Contribution guidelines.

Topics

• Amazon CloudWatch Examples

• Amazon DynamoDB Examples

• Amazon EC2 Examples

• AWS Elemental MediaConvert Examples

• Amazon S3 Glacier Examples

• AWS IAM Examples

• Amazon Kinesis Example

• Amazon S3 Examples

• Amazon Simple Email Service Examples

• Amazon Simple Notification Service Examples

• Amazon SQS Examples

Amazon CloudWatch Examples

Amazon CloudWatch (CloudWatch) is a web service that monitors your Amazon Web Services 
resources and applications you run on AWS in real time. You can use CloudWatch to collect and 
track metrics, which are variables you can measure for your resources and applications. CloudWatch 
alarms send notifications or automatically make changes to the resources you are monitoring 
based on rules that you define.

Amazon CloudWatch Examples 99

https://github.com/awsdocs/aws-doc-sdk-examples
https://github.com/awsdocs/aws-doc-sdk-examples
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/CONTRIBUTING.md#authoring-code


AWS SDK for JavaScript Developer Guide for SDK v2

The JavaScript API for CloudWatch is exposed through the AWS.CloudWatch,
AWS.CloudWatchEvents, and AWS.CloudWatchLogs client classes. For more information 
about using the CloudWatch client classes, see Class: AWS.CloudWatch, Class: 
AWS.CloudWatchEvents, and Class: AWS.CloudWatchLogs in the API reference.

Topics

• Creating Alarms in Amazon CloudWatch

• Using Alarm Actions in Amazon CloudWatch

• Getting Metrics from Amazon CloudWatch

• Sending Events to Amazon CloudWatch Events

• Using Subscription Filters in Amazon CloudWatch Logs

Creating Alarms in Amazon CloudWatch

This Node.js code example shows:

• How to retrieve basic information about your CloudWatch alarms.

• How to create and delete a CloudWatch alarm.

Creating Alarms in Amazon CloudWatch 100

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/CloudWatch.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/CloudWatchEvents.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/CloudWatchEvents.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/CloudWatchLogs.html


AWS SDK for JavaScript Developer Guide for SDK v2

The Scenario

An alarm watches a single metric over a time period you specify, and performs one or more actions 
based on the value of the metric relative to a given threshold over a number of time periods.

In this example, a series of Node.js modules are used to create alarms in CloudWatch. The Node.js 
modules use the SDK for JavaScript to create alarms using these methods of the AWS.CloudWatch
client class:

• describeAlarms

• putMetricAlarm

• deleteAlarms

For more information about CloudWatch alarms, see Creating Amazon CloudWatch Alarms in the
Amazon CloudWatch User Guide.

Prerequisite Tasks

To set up and run this example, you must first complete these tasks:

• Install Node.js. For more information about installing Node.js, see the Node.js website.

• Create a shared configurations file with your user credentials. For more information about 
providing a shared credentials file, see Loading Credentials in Node.js from the Shared 
Credentials File.

Describing Alarms

Create a Node.js module with the file name cw_describealarms.js. Be sure to configure the 
SDK as previously shown. To access CloudWatch, create an AWS.CloudWatch service object. 
Create a JSON object to hold the parameters for retrieving alarm descriptions, limiting the alarms 
returned to those with a state of INSUFFICIENT_DATA. Then call the describeAlarms method 
of the AWS.CloudWatch service object.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

Creating Alarms in Amazon CloudWatch 101

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/CloudWatch.html#describeAlarms-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/CloudWatch.html#putMetricAlarm-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/CloudWatch.html#deleteAlarms-property
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
https://nodejs.org


AWS SDK for JavaScript Developer Guide for SDK v2

// Create CloudWatch service object
var cw = new AWS.CloudWatch({ apiVersion: "2010-08-01" });

cw.describeAlarms({ StateValue: "INSUFFICIENT_DATA" }, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    // List the names of all current alarms in the console 
    data.MetricAlarms.forEach(function (item, index, array) { 
      console.log(item.AlarmName); 
    }); 
  }
});

To run the example, type the following at the command line.

node cw_describealarms.js

This sample code can be found here on GitHub.

Creating an Alarm for a CloudWatch Metric

Create a Node.js module with the file name cw_putmetricalarm.js. Be sure to configure the 
SDK as previously shown. To access CloudWatch, create an AWS.CloudWatch service object. Create 
a JSON object for the parameters needed to create an alarm based on a metric, in this case the 
CPU utilization of an Amazon EC2 instance. The remaining parameters are set so the alarm triggers 
when the metric exceeds a threshold of 70 percent. Then call the describeAlarms method of the
AWS.CloudWatch service object.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create CloudWatch service object
var cw = new AWS.CloudWatch({ apiVersion: "2010-08-01" });

var params = { 
  AlarmName: "Web_Server_CPU_Utilization", 
  ComparisonOperator: "GreaterThanThreshold", 

Creating Alarms in Amazon CloudWatch 102

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/cloudwatch/cw_describealarms.js


AWS SDK for JavaScript Developer Guide for SDK v2

  EvaluationPeriods: 1, 
  MetricName: "CPUUtilization", 
  Namespace: "AWS/EC2", 
  Period: 60, 
  Statistic: "Average", 
  Threshold: 70.0, 
  ActionsEnabled: false, 
  AlarmDescription: "Alarm when server CPU exceeds 70%", 
  Dimensions: [ 
    { 
      Name: "InstanceId", 
      Value: "INSTANCE_ID", 
    }, 
  ], 
  Unit: "Percent",
};

cw.putMetricAlarm(params, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Success", data); 
  }
});

To run the example, type the following at the command line.

node cw_putmetricalarm.js

This sample code can be found here on GitHub.

Deleting an Alarm

Create a Node.js module with the file name cw_deletealarms.js. Be sure to configure the SDK 
as previously shown. To access CloudWatch, create an AWS.CloudWatch service object. Create a 
JSON object to hold the names of the alarms you want to delete. Then call the deleteAlarms
method of the AWS.CloudWatch service object.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

Creating Alarms in Amazon CloudWatch 103

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/cloudwatch/cw_putmetricalarm.js


AWS SDK for JavaScript Developer Guide for SDK v2

// Create CloudWatch service object
var cw = new AWS.CloudWatch({ apiVersion: "2010-08-01" });

var params = { 
  AlarmNames: ["Web_Server_CPU_Utilization"],
};

cw.deleteAlarms(params, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Success", data); 
  }
});

To run the example, type the following at the command line.

node cw_deletealarms.js

This sample code can be found here on GitHub.

Using Alarm Actions in Amazon CloudWatch

This Node.js code example shows:

• How to change the state of your Amazon EC2 instances automatically based on a CloudWatch 
alarm.

The Scenario

Using alarm actions, you can create alarms that automatically stop, terminate, reboot, or recover 
your Amazon EC2 instances. You can use the stop or terminate actions when you no longer need an 
instance to be running. You can use the reboot and recover actions to automatically reboot those 
instances.

Using Alarm Actions in Amazon CloudWatch 104

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/cloudwatch/cw_deletealarms.js


AWS SDK for JavaScript Developer Guide for SDK v2

In this example, a series of Node.js modules are used to define an alarm action in CloudWatch that 
triggers the reboot of an Amazon EC2 instance. The Node.js modules use the SDK for JavaScript to 
manage Amazon EC2 instances using these methods of the CloudWatch client class:

• enableAlarmActions

• disableAlarmActions

For more information about CloudWatch alarm actions, see Create Alarms to Stop, Terminate, 
Reboot, or Recover an Instance in the Amazon CloudWatch User Guide.

Prerequisite Tasks

To set up and run this example, you must first complete these tasks:

• Install Node.js. For more information about installing Node.js, see the Node.js website.

• Create a shared configurations file with your user credentials. For more information about 
providing a shared credentials file, see Loading Credentials in Node.js from the Shared 
Credentials File.

• Create an IAM role whose policy grants permission to describe, reboot, stop, or terminate an 
Amazon EC2 instance. For more information about creating an IAM role, see Creating a Role to 
Delegate Permissions to an AWS Service in the IAM User Guide.

Use the following role policy when creating the IAM role.

{ 
   "Version": "2012-10-17", 
   "Statement": [ 
      { 
         "Effect": "Allow", 
         "Action": [ 
            "cloudwatch:Describe*", 
            "ec2:Describe*", 
            "ec2:RebootInstances", 
            "ec2:StopInstances*", 
            "ec2:TerminateInstances" 
         ], 
         "Resource": [ 
            "*" 
         ] 

Using Alarm Actions in Amazon CloudWatch 105

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/CloudWatch.html#enableAlarmActions-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/CloudWatch.html#disableAlarmActions-property
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/UsingAlarmActions.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/UsingAlarmActions.html
http://nodejs.org
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html


AWS SDK for JavaScript Developer Guide for SDK v2

      } 
   ]
}

Configure the SDK for JavaScript by creating a global configuration object then setting the Region 
for your code. In this example, the Region is set to us-west-2.

// Load the SDK for JavaScript
var AWS = require('aws-sdk');
// Set the Region  
AWS.config.update({region: 'us-west-2'});

Creating and Enabling Actions on an Alarm

Create a Node.js module with the file name cw_enablealarmactions.js. Be sure to configure 
the SDK as previously shown. To access CloudWatch, create an AWS.CloudWatch service object.

Create a JSON object to hold the parameters for creating an alarm, specifying ActionsEnabled
as true and an array of ARNs for the actions the alarm will trigger. Call the putMetricAlarm
method of the AWS.CloudWatch service object, which creates the alarm if it does not exist or 
updates it if the alarm does exist.

In the callback function for the putMetricAlarm, upon successful completion create a JSON 
object containing the name of the CloudWatch alarm. Call the enableAlarmActions method to 
enable the alarm action.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create CloudWatch service object
var cw = new AWS.CloudWatch({ apiVersion: "2010-08-01" });

var params = { 
  AlarmName: "Web_Server_CPU_Utilization", 
  ComparisonOperator: "GreaterThanThreshold", 
  EvaluationPeriods: 1, 
  MetricName: "CPUUtilization", 
  Namespace: "AWS/EC2", 

Using Alarm Actions in Amazon CloudWatch 106



AWS SDK for JavaScript Developer Guide for SDK v2

  Period: 60, 
  Statistic: "Average", 
  Threshold: 70.0, 
  ActionsEnabled: true, 
  AlarmActions: ["ACTION_ARN"], 
  AlarmDescription: "Alarm when server CPU exceeds 70%", 
  Dimensions: [ 
    { 
      Name: "InstanceId", 
      Value: "INSTANCE_ID", 
    }, 
  ], 
  Unit: "Percent",
};

cw.putMetricAlarm(params, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Alarm action added", data); 
    var paramsEnableAlarmAction = { 
      AlarmNames: [params.AlarmName], 
    }; 
    cw.enableAlarmActions(paramsEnableAlarmAction, function (err, data) { 
      if (err) { 
        console.log("Error", err); 
      } else { 
        console.log("Alarm action enabled", data); 
      } 
    }); 
  }
});

To run the example, type the following at the command line.

node cw_enablealarmactions.js

This sample code can be found here on GitHub.

Disabling Actions on an Alarm

Create a Node.js module with the file name cw_disablealarmactions.js. Be sure to 
configure the SDK as previously shown. To access CloudWatch, create an AWS.CloudWatch

Using Alarm Actions in Amazon CloudWatch 107

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/cloudwatch/cw_enablealarmactions.js


AWS SDK for JavaScript Developer Guide for SDK v2

service object. Create a JSON object containing the name of the CloudWatch alarm. Call the
disableAlarmActions method to disable the actions for this alarm.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create CloudWatch service object
var cw = new AWS.CloudWatch({ apiVersion: "2010-08-01" });

cw.disableAlarmActions( 
  { AlarmNames: ["Web_Server_CPU_Utilization"] }, 
  function (err, data) { 
    if (err) { 
      console.log("Error", err); 
    } else { 
      console.log("Success", data); 
    } 
  }
);

To run the example, type the following at the command line.

node cw_disablealarmactions.js

This sample code can be found here on GitHub.

Getting Metrics from Amazon CloudWatch

This Node.js code example shows:

• How to retrieve a list of published CloudWatch metrics.

• How to publish data points to CloudWatch metrics.

Getting Metrics from Amazon CloudWatch 108

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/cloudwatch/cw_disablealarmactions.js


AWS SDK for JavaScript Developer Guide for SDK v2

The Scenario

Metrics are data about the performance of your systems. You can enable detailed monitoring of 
some resources, such as your Amazon EC2 instances, or your own application metrics.

In this example, a series of Node.js modules are used to get metrics from CloudWatch and to send 
events to Amazon CloudWatch Events. The Node.js modules use the SDK for JavaScript to get 
metrics from CloudWatch using these methods of the CloudWatch client class:

• listMetrics

• putMetricData

For more information about CloudWatch metrics, see Using Amazon CloudWatch Metrics in the
Amazon CloudWatch User Guide.

Prerequisite Tasks

To set up and run this example, you must first complete these tasks:

• Install Node.js. For more information about installing Node.js, see the Node.js website.

• Create a shared configurations file with your user credentials. For more information about 
providing a shared credentials file, see Loading Credentials in Node.js from the Shared 
Credentials File.

Listing Metrics

Create a Node.js module with the file name cw_listmetrics.js. Be sure to configure the SDK 
as previously shown. To access CloudWatch, create an AWS.CloudWatch service object. Create a 
JSON object containing the parameters needed to list metrics within the AWS/Logs namespace. 
Call the listMetrics method to list the IncomingLogEvents metric.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create CloudWatch service object
var cw = new AWS.CloudWatch({ apiVersion: "2010-08-01" });

Getting Metrics from Amazon CloudWatch 109

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/CloudWatch.html#listMetrics-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/CloudWatch.html#putMetricData-property
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html
https://nodejs.org


AWS SDK for JavaScript Developer Guide for SDK v2

var params = { 
  Dimensions: [ 
    { 
      Name: "LogGroupName" /* required */, 
    }, 
  ], 
  MetricName: "IncomingLogEvents", 
  Namespace: "AWS/Logs",
};

cw.listMetrics(params, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Metrics", JSON.stringify(data.Metrics)); 
  }
});

To run the example, type the following at the command line.

node cw_listmetrics.js

This sample code can be found here on GitHub.

Submitting Custom Metrics

Create a Node.js module with the file name cw_putmetricdata.js. Be sure to configure the SDK 
as previously shown. To access CloudWatch, create an AWS.CloudWatch service object. Create a 
JSON object containing the parameters needed to submit a data point for the PAGES_VISITED
custom metric. Call the putMetricData method.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create CloudWatch service object
var cw = new AWS.CloudWatch({ apiVersion: "2010-08-01" });

// Create parameters JSON for putMetricData
var params = { 
  MetricData: [ 

Getting Metrics from Amazon CloudWatch 110

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/cloudwatch/cw_listmetrics.js


AWS SDK for JavaScript Developer Guide for SDK v2

    { 
      MetricName: "PAGES_VISITED", 
      Dimensions: [ 
        { 
          Name: "UNIQUE_PAGES", 
          Value: "URLS", 
        }, 
      ], 
      Unit: "None", 
      Value: 1.0, 
    }, 
  ], 
  Namespace: "SITE/TRAFFIC",
};

cw.putMetricData(params, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Success", JSON.stringify(data)); 
  }
});

To run the example, type the following at the command line.

node cw_putmetricdata.js

This sample code can be found here on GitHub.

Sending Events to Amazon CloudWatch Events

This Node.js code example shows:

• How to create and update a rule used to trigger an event.

• How to define one or more targets to respond to an event.

• How to send events that are matched to targets for handling.

Sending Events to Amazon CloudWatch Events 111

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/cloudwatch/cw_putmetricdata.js


AWS SDK for JavaScript Developer Guide for SDK v2

The Scenario

CloudWatch Events delivers a near real-time stream of system events that describe changes in 
Amazon Web Services resources to any of various targets. Using simple rules, you can match events 
and route them to one or more target functions or streams.

In this example, a series of Node.js modules are used to send events to CloudWatch Events. The 
Node.js modules use the SDK for JavaScript to manage instances using these methods of the
CloudWatchEvents client class:

• putRule

• putTargets

• putEvents

For more information about CloudWatch Events, see Adding Events with PutEvents in the Amazon 
CloudWatch Events User Guide.

Prerequisite Tasks

To set up and run this example, you must first complete these tasks:

• Install Node.js. For more information about installing Node.js, see the Node.js website.

• Create a shared configurations file with your user credentials. For more information about 
providing a shared credentials file, see Loading Credentials in Node.js from the Shared 
Credentials File.

• Create a Lambda function using the hello-world blueprint to serve as the target for events. To 
learn how, see  Step 1: Create an AWS Lambda function in the Amazon CloudWatch Events User 
Guide.

• Create an IAM role whose policy grants permission to CloudWatch Events and that includes
events.amazonaws.com as a trusted entity. For more information about creating an IAM role, 
see  Creating a Role to Delegate Permissions to an AWS Service in the IAM User Guide.

Use the following role policy when creating the IAM role.

{ 
   "Version": "2012-10-17", 

Sending Events to Amazon CloudWatch Events 112

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/CloudWatchEvents.html#putRule-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/CloudWatchEvents.html#putTargets-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/CloudWatchEvents.html#putEvents-property
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/AddEventsPutEvents.html
https://nodejs.org
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/LogEC2InstanceState.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html


AWS SDK for JavaScript Developer Guide for SDK v2

   "Statement": [ 
      { 
         "Sid": "CloudWatchEventsFullAccess", 
         "Effect": "Allow", 
         "Action": "events:*", 
         "Resource": "*" 
      }, 
      { 
         "Sid": "IAMPassRoleForCloudWatchEvents", 
         "Effect": "Allow", 
         "Action": "iam:PassRole", 
         "Resource": "arn:aws:iam::*:role/AWS_Events_Invoke_Targets" 
      }       
   ]
}

Use the following trust relationship when creating the IAM role.

{ 
   "Version": "2012-10-17", 
   "Statement": [ 
      { 
         "Effect": "Allow", 
         "Principal": { 
            "Service": "events.amazonaws.com" 
         }, 
         "Action": "sts:AssumeRole" 
      }       
   ]
}

Creating a Scheduled Rule

Create a Node.js module with the file name cwe_putrule.js. Be sure to configure the SDK as 
previously shown. To access CloudWatch Events, create an AWS.CloudWatchEvents service 
object. Create a JSON object containing the parameters needed to specify the new scheduled rule, 
which include the following:

• A name for the rule

• The ARN of the IAM role you created previously

• An expression to schedule triggering of the rule every five minutes

Sending Events to Amazon CloudWatch Events 113



AWS SDK for JavaScript Developer Guide for SDK v2

Call the putRule method to create the rule. The callback returns the ARN of the new or updated 
rule.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create CloudWatchEvents service object
var cwevents = new AWS.CloudWatchEvents({ apiVersion: "2015-10-07" });

var params = { 
  Name: "DEMO_EVENT", 
  RoleArn: "IAM_ROLE_ARN", 
  ScheduleExpression: "rate(5 minutes)", 
  State: "ENABLED",
};

cwevents.putRule(params, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Success", data.RuleArn); 
  }
});

To run the example, type the following at the command line.

node cwe_putrule.js

This sample code can be found here on GitHub.

Adding a AWS Lambda Function Target

Create a Node.js module with the file name cwe_puttargets.js. Be sure to configure the SDK 
as previously shown. To access CloudWatch Events, create an AWS.CloudWatchEvents service 
object. Create a JSON object containing the parameters needed to specify the rule to which 
you want to attach the target, including the ARN of the Lambda function you created. Call the
putTargets method of the AWS.CloudWatchEvents service object.

// Load the AWS SDK for Node.js

Sending Events to Amazon CloudWatch Events 114

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/cloudwatch-events/cwe_putrule.js


AWS SDK for JavaScript Developer Guide for SDK v2

var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create CloudWatchEvents service object
var cwevents = new AWS.CloudWatchEvents({ apiVersion: "2015-10-07" });

var params = { 
  Rule: "DEMO_EVENT", 
  Targets: [ 
    { 
      Arn: "LAMBDA_FUNCTION_ARN", 
      Id: "myCloudWatchEventsTarget", 
    }, 
  ],
};

cwevents.putTargets(params, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Success", data); 
  }
});

To run the example, type the following at the command line.

node cwe_puttargets.js

This sample code can be found here on GitHub.

Sending Events

Create a Node.js module with the file name cwe_putevents.js. Be sure to configure the SDK 
as previously shown. To access CloudWatch Events, create an AWS.CloudWatchEvents service 
object. Create a JSON object containing the parameters needed to send events. For each event, 
include the source of the event, the ARNs of any resources affected by the event, and details for the 
event. Call the putEvents method of the AWS.CloudWatchEvents service object.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");

Sending Events to Amazon CloudWatch Events 115

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/cloudwatch-events/cwe_puttargets.js


AWS SDK for JavaScript Developer Guide for SDK v2

// Set the region
AWS.config.update({ region: "REGION" });

// Create CloudWatchEvents service object
var cwevents = new AWS.CloudWatchEvents({ apiVersion: "2015-10-07" });

var params = { 
  Entries: [ 
    { 
      Detail: '{ "key1": "value1", "key2": "value2" }', 
      DetailType: "appRequestSubmitted", 
      Resources: ["RESOURCE_ARN"], 
      Source: "com.company.app", 
    }, 
  ],
};

cwevents.putEvents(params, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Success", data.Entries); 
  }
});

To run the example, type the following at the command line.

node cwe_putevents.js

This sample code can be found here on GitHub.

Using Subscription Filters in Amazon CloudWatch Logs

This Node.js code example shows:

• How to create and delete filters for log events in CloudWatch Logs.

Using Subscription Filters in Amazon CloudWatch Logs 116

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/cloudwatch-events/cwe_putevents.js


AWS SDK for JavaScript Developer Guide for SDK v2

The Scenario

Subscriptions provide access to a real-time feed of log events from CloudWatch Logs and deliver 
that feed to other services, such as an Amazon Kinesis stream or AWS Lambda, for custom 
processing, analysis, or loading to other systems. A subscription filter defines the pattern to use for 
filtering which log events are delivered to your AWS resource.

In this example, a series of Node.js modules are used to list, create, and delete a subscription 
filter in CloudWatch Logs. The destination for the log events is a Lambda function. The Node.js 
modules use the SDK for JavaScript to manage subscription filters using these methods of the
CloudWatchLogs client class:

• putSubscriptionFilters

• describeSubscriptionFilters

• deleteSubscriptionFilter

For more information about CloudWatch Logs subscriptions, see Real-time Processing of Log Data 
with Subscriptions in the Amazon CloudWatch Logs User Guide.

Prerequisite Tasks

To set up and run this example, you must first complete these tasks:

• Install Node.js. For more information about installing Node.js, see the Node.js website.

• Create a shared configurations file with your user credentials. For more information about 
providing a shared credentials file, see Loading Credentials in Node.js from the Shared 
Credentials File.

• Create a Lambda function as the destination for log events. You will need to use the ARN of this 
function. For more information about setting up a Lambda function, see Subscription Filters with 
AWS Lambda in the Amazon CloudWatch Logs User Guide.

• Create an IAM role whose policy grants permission to invoke the Lambda function you created 
and grants full access to CloudWatch Logs or apply the following policy to the execution role you 
create for the Lambda function. For more information about creating an IAM role, see Creating a 
Role to Delegate Permissions to an AWS Service in the IAM User Guide.

Use the following role policy when creating the IAM role.

Using Subscription Filters in Amazon CloudWatch Logs 117

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/CloudWatchLogs.html#putSubscriptionFilters-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/CloudWatchLogs.html#describeSubscriptionFilters-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/CloudWatchLogs.html#deleteSubscriptionFilter-property
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Subscriptions.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Subscriptions.html
https://nodejs.org
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/SubscriptionFilters.html#LambdaFunctionExample
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/SubscriptionFilters.html#LambdaFunctionExample
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html


AWS SDK for JavaScript Developer Guide for SDK v2

{ 
   "Version": "2012-10-17", 
   "Statement": [ 
      { 
         "Effect": "Allow", 
         "Action": [ 
            "logs:CreateLogGroup", 
            "logs:CreateLogStream", 
            "logs:PutLogEvents" 
         ], 
         "Resource": "arn:aws:logs:*:*:*" 
      }, 
      { 
         "Effect": "Allow", 
         "Action": [ 
            "lambda:InvokeFunction" 
         ], 
         "Resource": [ 
            "*" 
         ] 
      } 
   ]
}

Describing Existing Subscription Filters

Create a Node.js module with the file name cwl_describesubscriptionfilters.js. 
Be sure to configure the SDK as previously shown. To access CloudWatch Logs, create an
AWS.CloudWatchLogs service object. Create a JSON object containing the parameters needed 
to describe your existing filters, including the name of the log group and the maximum number of 
filters you want described. Call the describeSubscriptionFilters method.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the CloudWatchLogs service object
var cwl = new AWS.CloudWatchLogs({ apiVersion: "2014-03-28" });

var params = { 
  logGroupName: "GROUP_NAME", 

Using Subscription Filters in Amazon CloudWatch Logs 118



AWS SDK for JavaScript Developer Guide for SDK v2

  limit: 5,
};

cwl.describeSubscriptionFilters(params, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Success", data.subscriptionFilters); 
  }
});

To run the example, type the following at the command line.

node cwl_describesubscriptionfilters.js

This sample code can be found here on GitHub.

Creating a Subscription Filter

Create a Node.js module with the file name cwl_putsubscriptionfilter.js. Be 
sure to configure the SDK as previously shown. To access CloudWatch Logs, create an
AWS.CloudWatchLogs service object. Create a JSON object containing the parameters needed to 
create a filter, including the ARN of the destination Lambda function, the name of the filter, the 
string pattern for filtering, and the name of the log group. Call the putSubscriptionFilters
method.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the CloudWatchLogs service object
var cwl = new AWS.CloudWatchLogs({ apiVersion: "2014-03-28" });

var params = { 
  destinationArn: "LAMBDA_FUNCTION_ARN", 
  filterName: "FILTER_NAME", 
  filterPattern: "ERROR", 
  logGroupName: "LOG_GROUP",
};

cwl.putSubscriptionFilter(params, function (err, data) { 

Using Subscription Filters in Amazon CloudWatch Logs 119

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/cloudwatch-logs/cwl_describesubscriptionfilters.js


AWS SDK for JavaScript Developer Guide for SDK v2

  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Success", data); 
  }
});

To run the example, type the following at the command line.

node cwl_putsubscriptionfilter.js

This sample code can be found here on GitHub.

Deleting a Subscription Filter

Create a Node.js module with the file name cwl_deletesubscriptionfilters.js. 
Be sure to configure the SDK as previously shown. To access CloudWatch Logs, create an
AWS.CloudWatchLogs service object. Create a JSON object containing the parameters 
needed to delete a filter, including the names of the filter and the log group. Call the
deleteSubscriptionFilters method.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the CloudWatchLogs service object
var cwl = new AWS.CloudWatchLogs({ apiVersion: "2014-03-28" });

var params = { 
  filterName: "FILTER", 
  logGroupName: "LOG_GROUP",
};

cwl.deleteSubscriptionFilter(params, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Success", data); 
  }
});

Using Subscription Filters in Amazon CloudWatch Logs 120

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/cloudwatch-logs/cwl_putsubscriptionfilter.js


AWS SDK for JavaScript Developer Guide for SDK v2

To run the example, type the following at the command line.

node cwl_deletesubscriptionfilter.js

This sample code can be found here on GitHub.

Amazon DynamoDB Examples

Amazon DynamoDB is a fully managed NoSQL cloud database that supports both document and 
key-value store models. You create schemaless tables for data without the need to provision or 
maintain dedicated database servers.

The JavaScript API for DynamoDB is exposed through the AWS.DynamoDB,
AWS.DynamoDBStreams, and AWS.DynamoDB.DocumentClient client classes. For more 
information about using the DynamoDB client classes, see Class: AWS.DynamoDB, Class: 
AWS.DynamoDBStreams, and Class: AWS.DynamoDB.DocumentClient in the API reference.

Topics

• Creating and Using Tables in DynamoDB

• Reading and Writing A Single Item in DynamoDB

• Reading and Writing Items in Batch in DynamoDB

• Querying and Scanning a DynamoDB Table

• Using the DynamoDB Document Client

Amazon DynamoDB Examples 121

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/cloudwatch-logs/cwl_deletesubscriptionfilter.js
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDBStreams.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDBStreams.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB/DocumentClient.html


AWS SDK for JavaScript Developer Guide for SDK v2

Creating and Using Tables in DynamoDB

This Node.js code example shows:

• How to create and manage tables used to store and retrieve data from DynamoDB.

The Scenario

Similar to other database systems, DynamoDB stores data in tables. A DynamoDB table is a 
collection of data that's organized into items that are analogous to rows. To store or access data in 
DynamoDB, you create and work with tables.

In this example, you use a series of Node.js modules to perform basic operations with a DynamoDB 
table. The code uses the SDK for JavaScript to create and work with tables by using these methods 
of the AWS.DynamoDB client class:

• createTable

• listTables

• describeTable

• deleteTable

Prerequisite Tasks

To set up and run this example, first complete these tasks:

• Install Node.js. For more information, see the Node.js website.

• Create a shared configurations file with your user credentials. For more information about 
providing a shared credentials file, see Loading Credentials in Node.js from the Shared 
Credentials File.

Creating and Using Tables in DynamoDB 122

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB.html#createTable-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB.html#listTables-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB.html#describeTable-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB.html#deleteTable-property
https://nodejs.org


AWS SDK for JavaScript Developer Guide for SDK v2

Creating a Table

Create a Node.js module with the file name ddb_createtable.js. Be sure to configure the SDK 
as previously shown. To access DynamoDB, create an AWS.DynamoDB service object. Create a JSON 
object containing the parameters needed to create a table, which in this example includes the 
name and data type for each attribute, the key schema, the name of the table, and the units of 
throughput to provision. Call the createTable method of the DynamoDB service object.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the DynamoDB service object
var ddb = new AWS.DynamoDB({ apiVersion: "2012-08-10" });

var params = { 
  AttributeDefinitions: [ 
    { 
      AttributeName: "CUSTOMER_ID", 
      AttributeType: "N", 
    }, 
    { 
      AttributeName: "CUSTOMER_NAME", 
      AttributeType: "S", 
    }, 
  ], 
  KeySchema: [ 
    { 
      AttributeName: "CUSTOMER_ID", 
      KeyType: "HASH", 
    }, 
    { 
      AttributeName: "CUSTOMER_NAME", 
      KeyType: "RANGE", 
    }, 
  ], 
  ProvisionedThroughput: { 
    ReadCapacityUnits: 1, 
    WriteCapacityUnits: 1, 
  }, 
  TableName: "CUSTOMER_LIST", 
  StreamSpecification: { 

Creating and Using Tables in DynamoDB 123



AWS SDK for JavaScript Developer Guide for SDK v2

    StreamEnabled: false, 
  },
};

// Call DynamoDB to create the table
ddb.createTable(params, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Table Created", data); 
  }
});

To run the example, type the following at the command line.

node ddb_createtable.js

This sample code can be found here on GitHub.

Listing Your Tables

Create a Node.js module with the file name ddb_listtables.js. Be sure to configure the SDK 
as previously shown. To access DynamoDB, create an AWS.DynamoDB service object. Create a 
JSON object containing the parameters needed to list your tables, which in this example limits the 
number of tables listed to 10. Call the listTables method of the DynamoDB service object.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the DynamoDB service object
var ddb = new AWS.DynamoDB({ apiVersion: "2012-08-10" });

// Call DynamoDB to retrieve the list of tables
ddb.listTables({ Limit: 10 }, function (err, data) { 
  if (err) { 
    console.log("Error", err.code); 
  } else { 
    console.log("Table names are ", data.TableNames); 
  }
});

Creating and Using Tables in DynamoDB 124

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/dynamodb/ddb_createtable.js


AWS SDK for JavaScript Developer Guide for SDK v2

To run the example, type the following at the command line.

node ddb_listtables.js

This sample code can be found here on GitHub.

Describing a Table

Create a Node.js module with the file name ddb_describetable.js. Be sure to configure the 
SDK as previously shown. To access DynamoDB, create an AWS.DynamoDB service object. Create a 
JSON object containing the parameters needed to describe a table, which in this example includes 
the name of the table provided as a command-line parameter. Call the describeTable method of 
the DynamoDB service object.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the DynamoDB service object
var ddb = new AWS.DynamoDB({ apiVersion: "2012-08-10" });

var params = { 
  TableName: process.argv[2],
};

// Call DynamoDB to retrieve the selected table descriptions
ddb.describeTable(params, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Success", data.Table.KeySchema); 
  }
});

To run the example, type the following at the command line.

node ddb_describetable.js TABLE_NAME

This sample code can be found here on GitHub.

Creating and Using Tables in DynamoDB 125

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/dynamodb/ddb_listtables.js
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/dynamodb/ddb_describetable.js


AWS SDK for JavaScript Developer Guide for SDK v2

Deleting a Table

Create a Node.js module with the file name ddb_deletetable.js. Be sure to configure the SDK 
as previously shown. To access DynamoDB, create an AWS.DynamoDB service object. Create a JSON 
object containing the parameters needed to delete a table, which in this example includes the 
name of the table provided as a command-line parameter. Call the deleteTable method of the 
DynamoDB service object.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the DynamoDB service object
var ddb = new AWS.DynamoDB({ apiVersion: "2012-08-10" });

var params = { 
  TableName: process.argv[2],
};

// Call DynamoDB to delete the specified table
ddb.deleteTable(params, function (err, data) { 
  if (err && err.code === "ResourceNotFoundException") { 
    console.log("Error: Table not found"); 
  } else if (err && err.code === "ResourceInUseException") { 
    console.log("Error: Table in use"); 
  } else { 
    console.log("Success", data); 
  }
});

To run the example, type the following at the command line.

node ddb_deletetable.js TABLE_NAME

This sample code can be found here on GitHub.

Creating and Using Tables in DynamoDB 126

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/dynamodb/ddb_deletetable.js


AWS SDK for JavaScript Developer Guide for SDK v2

Reading and Writing A Single Item in DynamoDB

This Node.js code example shows:

• How to add an item in a DynamoDB table.

• How to retrieve an item in a DynamoDB table.

• How to delete an item in a DynamoDB table.

The Scenario

In this example, you use a series of Node.js modules to read and write one item in a DynamoDB 
table by using these methods of the AWS.DynamoDB client class:

• putItem

• getItem

• deleteItem

Prerequisite Tasks

To set up and run this example, first complete these tasks:

• Install Node.js. For more information, see the Node.js website.

• Create a shared configurations file with your user credentials. For more information about 
providing a shared credentials file, see Loading Credentials in Node.js from the Shared 
Credentials File.

• Create a DynamoDB table whose items you can access. For more information about creating a 
DynamoDB table, see Creating and Using Tables in DynamoDB.

Writing an Item

Create a Node.js module with the file name ddb_putitem.js. Be sure to configure the SDK as 
previously shown. To access DynamoDB, create an AWS.DynamoDB service object. Create a JSON 

Reading and Writing A Single Item in DynamoDB 127

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB.html#putItem-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB.html#getItem-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB.html#deleteItem-property
https://nodejs.org


AWS SDK for JavaScript Developer Guide for SDK v2

object containing the parameters needed to add an item, which in this example includes the name 
of the table and a map that defines the attributes to set and the values for each attribute. Call the
putItem method of the DynamoDB service object.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the DynamoDB service object
var ddb = new AWS.DynamoDB({ apiVersion: "2012-08-10" });

var params = { 
  TableName: "CUSTOMER_LIST", 
  Item: { 
    CUSTOMER_ID: { N: "001" }, 
    CUSTOMER_NAME: { S: "Richard Roe" }, 
  },
};

// Call DynamoDB to add the item to the table
ddb.putItem(params, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Success", data); 
  }
});

To run the example, type the following at the command line.

node ddb_putitem.js

This sample code can be found here on GitHub.

Getting an Item

Create a Node.js module with the file name ddb_getitem.js. Be sure to configure the SDK as 
previously shown. To access DynamoDB, create an AWS.DynamoDB service object. To identify the 
item to get, you must provide the value of the primary key for that item in the table. By default, 
the getItem method returns all the attribute values defined for the item. To get only a subset of 
all possible attribute values, specify a projection expression.

Reading and Writing A Single Item in DynamoDB 128

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/dynamodb/ddb_putitem.js


AWS SDK for JavaScript Developer Guide for SDK v2

Create a JSON object containing the parameters needed to get an item, which in this example 
includes the name of the table, the name and value of the key for the item you're getting, and 
a projection expression that identifies the item attribute you want to retrieve. Call the getItem
method of the DynamoDB service object.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the DynamoDB service object
var ddb = new AWS.DynamoDB({ apiVersion: "2012-08-10" });

var params = { 
  TableName: "TABLE", 
  Key: { 
    KEY_NAME: { N: "001" }, 
  }, 
  ProjectionExpression: "ATTRIBUTE_NAME",
};

// Call DynamoDB to read the item from the table
ddb.getItem(params, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Success", data.Item); 
  }
});

To run the example, type the following at the command line.

node ddb_getitem.js

This sample code can be found here on GitHub.

Deleting an Item

Create a Node.js module with the file name ddb_deleteitem.js. Be sure to configure the SDK 
as previously shown. To access DynamoDB, create an AWS.DynamoDB service object. Create a 
JSON object containing the parameters needed to delete an item, which in this example includes 

Reading and Writing A Single Item in DynamoDB 129

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/dynamodb/ddb_getitem.js


AWS SDK for JavaScript Developer Guide for SDK v2

the name of the table and both the key name and value for the item you're deleting. Call the
deleteItem method of the DynamoDB service object.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the DynamoDB service object
var ddb = new AWS.DynamoDB({ apiVersion: "2012-08-10" });

var params = { 
  TableName: "TABLE", 
  Key: { 
    KEY_NAME: { N: "VALUE" }, 
  },
};

// Call DynamoDB to delete the item from the table
ddb.deleteItem(params, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Success", data); 
  }
});

To run the example, type the following at the command line.

node ddb_deleteitem.js

This sample code can be found here on GitHub.

Reading and Writing Items in Batch in DynamoDB

This Node.js code example shows:

Reading and Writing Items in Batch in DynamoDB 130

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/dynamodb/ddb_deleteitem.js


AWS SDK for JavaScript Developer Guide for SDK v2

• How to read and write batches of items in a DynamoDB table.

The Scenario

In this example, you use a series of Node.js modules to put a batch of items in a DynamoDB table 
as well as read a batch of items. The code uses the SDK for JavaScript to perform batch read and 
write operations using these methods of the DynamoDB client class:

• batchGetItem

• batchWriteItem

Prerequisite Tasks

To set up and run this example, first complete these tasks:

• Install Node.js. For more information, see the Node.js website.

• Create a shared configurations file with your user credentials. For more information about 
providing a shared credentials file, see Loading Credentials in Node.js from the Shared 
Credentials File.

• Create a DynamoDB table whose items you can access. For more information about creating a 
DynamoDB table, see Creating and Using Tables in DynamoDB.

Reading Items in Batch

Create a Node.js module with the file name ddb_batchgetitem.js. Be sure to configure the SDK 
as previously shown. To access DynamoDB, create an AWS.DynamoDB service object. Create a JSON 
object containing the parameters needed to get a batch of items, which in this example includes 
the name of one or more tables from which to read, the values of keys to read in each table, and 
the projection expression that specifies the attributes to return. Call the batchGetItem method of 
the DynamoDB service object.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create DynamoDB service object
var ddb = new AWS.DynamoDB({ apiVersion: "2012-08-10" });

Reading and Writing Items in Batch in DynamoDB 131

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB.html#batchGetItem-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB.html#batchWriteItem-property
https://nodejs.org


AWS SDK for JavaScript Developer Guide for SDK v2

var params = { 
  RequestItems: { 
    TABLE_NAME: { 
      Keys: [ 
        { KEY_NAME: { N: "KEY_VALUE_1" } }, 
        { KEY_NAME: { N: "KEY_VALUE_2" } }, 
        { KEY_NAME: { N: "KEY_VALUE_3" } }, 
      ], 
      ProjectionExpression: "KEY_NAME, ATTRIBUTE", 
    }, 
  },
};

ddb.batchGetItem(params, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    data.Responses.TABLE_NAME.forEach(function (element, index, array) { 
      console.log(element); 
    }); 
  }
});

To run the example, type the following at the command line.

node ddb_batchgetitem.js

This sample code can be found here on GitHub.

Writing Items in Batch

Create a Node.js module with the file name ddb_batchwriteitem.js. Be sure to configure the 
SDK as previously shown. To access DynamoDB, create an AWS.DynamoDB service object. Create 
a JSON object containing the parameters needed to get a batch of items, which in this example 
includes the table into which you want to write items, the key(s) you want to write for each item, 
and the attributes along with their values. Call the batchWriteItem method of the DynamoDB 
service object.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region

Reading and Writing Items in Batch in DynamoDB 132

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/dynamodb/ddb_batchgetitem.js


AWS SDK for JavaScript Developer Guide for SDK v2

AWS.config.update({ region: "REGION" });

// Create DynamoDB service object
var ddb = new AWS.DynamoDB({ apiVersion: "2012-08-10" });

var params = { 
  RequestItems: { 
    TABLE_NAME: [ 
      { 
        PutRequest: { 
          Item: { 
            KEY: { N: "KEY_VALUE" }, 
            ATTRIBUTE_1: { S: "ATTRIBUTE_1_VALUE" }, 
            ATTRIBUTE_2: { N: "ATTRIBUTE_2_VALUE" }, 
          }, 
        }, 
      }, 
      { 
        PutRequest: { 
          Item: { 
            KEY: { N: "KEY_VALUE" }, 
            ATTRIBUTE_1: { S: "ATTRIBUTE_1_VALUE" }, 
            ATTRIBUTE_2: { N: "ATTRIBUTE_2_VALUE" }, 
          }, 
        }, 
      }, 
    ], 
  },
};

ddb.batchWriteItem(params, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Success", data); 
  }
});

To run the example, type the following at the command line.

node ddb_batchwriteitem.js

This sample code can be found here on GitHub.

Reading and Writing Items in Batch in DynamoDB 133

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/dynamodb/ddb_batchwriteitem.js


AWS SDK for JavaScript Developer Guide for SDK v2

Querying and Scanning a DynamoDB Table

This Node.js code example shows:

• How to query and scan a DynamoDB table for items.

The Scenario

Querying finds items in a table or a secondary index using only primary key attribute values. You 
must provide a partition key name and a value for which to search. You can also provide a sort key 
name and value, and use a comparison operator to refine the search results. Scanning finds items 
by checking every item in the specified table.

In this example, you use a series of Node.js modules to identify one or more items you want to 
retrieve from a DynamoDB table. The code uses the SDK for JavaScript to query and scan tables 
using these methods of the DynamoDB client class:

• query

• scan

Prerequisite Tasks

To set up and run this example, first complete these tasks:

• Install Node.js. For more information, see the Node.js website.

• Create a shared configurations file with your user credentials. For more information about 
providing a shared credentials file, see Loading Credentials in Node.js from the Shared 
Credentials File.

• Create a DynamoDB table whose items you can access. For more information about creating a 
DynamoDB table, see Creating and Using Tables in DynamoDB.

Querying and Scanning a DynamoDB Table 134

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB.html#query-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB.html#scan-property
https://nodejs.org


AWS SDK for JavaScript Developer Guide for SDK v2

Querying a Table

This example queries a table that contains episode information about a video series, returning 
the episode titles and subtitles of second season episodes past episode 9 that contain a specified 
phrase in their subtitle.

Create a Node.js module with the file name ddb_query.js. Be sure to configure the SDK 
as previously shown. To access DynamoDB, create an AWS.DynamoDB service object. Create 
a JSON object containing the parameters needed to query the table, which in this example 
includes the table name, the ExpressionAttributeValues needed by the query, a
KeyConditionExpression that uses those values to define which items the query returns, and 
the names of attribute values to return for each item. Call the query method of the DynamoDB 
service object.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create DynamoDB service object
var ddb = new AWS.DynamoDB({ apiVersion: "2012-08-10" });

var params = { 
  ExpressionAttributeValues: { 
    ":s": { N: "2" }, 
    ":e": { N: "09" }, 
    ":topic": { S: "PHRASE" }, 
  }, 
  KeyConditionExpression: "Season = :s and Episode > :e", 
  ProjectionExpression: "Episode, Title, Subtitle", 
  FilterExpression: "contains (Subtitle, :topic)", 
  TableName: "EPISODES_TABLE",
};

ddb.query(params, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    //console.log("Success", data.Items); 
    data.Items.forEach(function (element, index, array) { 
      console.log(element.Title.S + " (" + element.Subtitle.S + ")"); 
    }); 

Querying and Scanning a DynamoDB Table 135



AWS SDK for JavaScript Developer Guide for SDK v2

  }
});

To run the example, type the following at the command line.

node ddb_query.js

This sample code can be found here on GitHub.

Scanning a Table

Create a Node.js module with the file name ddb_scan.js. Be sure to configure the SDK as 
previously shown. To access DynamoDB, create an AWS.DynamoDB service object. Create a JSON 
object containing the parameters needed to scan the table for items, which in this example 
includes the name of the table, the list of attribute values to return for each matching item, and an 
expression to filter the result set to find items containing a specified phrase. Call the scan method 
of the DynamoDB service object.

// Load the AWS SDK for Node.js.
var AWS = require("aws-sdk");
// Set the AWS Region.
AWS.config.update({ region: "REGION" });

// Create DynamoDB service object.
var ddb = new AWS.DynamoDB({ apiVersion: "2012-08-10" });

const params = { 
  // Specify which items in the results are returned. 
  FilterExpression: "Subtitle = :topic AND Season = :s AND Episode = :e", 
  // Define the expression attribute value, which are substitutes for the values you 
 want to compare. 
  ExpressionAttributeValues: { 
    ":topic": { S: "SubTitle2" }, 
    ":s": { N: 1 }, 
    ":e": { N: 2 }, 
  }, 
  // Set the projection expression, which are the attributes that you want. 
  ProjectionExpression: "Season, Episode, Title, Subtitle", 
  TableName: "EPISODES_TABLE",
};

ddb.scan(params, function (err, data) { 

Querying and Scanning a DynamoDB Table 136

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/dynamodb/ddb_query.js


AWS SDK for JavaScript Developer Guide for SDK v2

  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Success", data); 
    data.Items.forEach(function (element, index, array) { 
      console.log( 
        "printing", 
        element.Title.S + " (" + element.Subtitle.S + ")" 
      ); 
    }); 
  }
});

To run the example, type the following at the command line.

node ddb_scan.js

This sample code can be found here on GitHub.

Using the DynamoDB Document Client

This Node.js code example shows:

• How to access a DynamoDB table using the document client.

The Scenario

The DynamoDB document client simplifies working with items by abstracting the notion of 
attribute values. This abstraction annotates native JavaScript types supplied as input parameters, 
as well as converts annotated response data to native JavaScript types.

For more information on the DynamoDB Document Client class, see
AWS.DynamoDB.DocumentClient in the API Reference. For more information on programming 
with Amazon DynamoDB, see Programming with DynamoDB in the Amazon DynamoDB Developer 
Guide.

Using the DynamoDB Document Client 137

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/dynamodb/ddb_scan.js
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB/DocumentClient.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Programming.html


AWS SDK for JavaScript Developer Guide for SDK v2

In this example, you use a series of Node.js modules to perform basic operations on a DynamoDB 
table using the document client. The code uses the SDK for JavaScript to query and scan tables 
using these methods of the DynamoDB Document Client class:

• get

• put

• update

• query

• delete

Prerequisite Tasks

To set up and run this example, first complete these tasks:

• Install Node.js. For more information, see the Node.js website.

• Create a shared configurations file with your user credentials. For more information about 
providing a shared credentials file, see Loading Credentials in Node.js from the Shared 
Credentials File.

• Create a DynamoDB table whose items you can access. For more information about creating a 
DynamoDB table using the SDK for JavaScript, see Creating and Using Tables in DynamoDB. You 
can also use the DynamoDB console to create a table.

Getting an Item from a Table

Create a Node.js module with the file name ddbdoc_get.js. Be sure to configure the SDK as 
previously shown. To access DynamoDB, create an AWS.DynamoDB.DocumentClient object. 
Create a JSON object containing the parameters needed get an item from the table, which in this 
example includes the name of the table, the name of the hash key in that table, and the value of 
the hash key for the item you want to get. Call the get method of the DynamoDB document client.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create DynamoDB document client
var docClient = new AWS.DynamoDB.DocumentClient({ apiVersion: "2012-08-10" });

Using the DynamoDB Document Client 138

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB/DocumentClient.html#get-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB/DocumentClient.html#put-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB/DocumentClient.html#update-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB/DocumentClient.html#query-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB/DocumentClient.html#delete-property
https://nodejs.org
https://console.aws.amazon.com/dynamodb/


AWS SDK for JavaScript Developer Guide for SDK v2

var params = { 
  TableName: "EPISODES_TABLE", 
  Key: { KEY_NAME: VALUE },
};

docClient.get(params, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Success", data.Item); 
  }
});

To run the example, type the following at the command line.

node ddbdoc_get.js

This sample code can be found here on GitHub.

Putting an Item in a Table

Create a Node.js module with the file name ddbdoc_put.js. Be sure to configure the SDK as 
previously shown. To access DynamoDB, create an AWS.DynamoDB.DocumentClient object. 
Create a JSON object containing the parameters needed to write an item to the table, which in 
this example includes the name of the table and a description of the item to add or update that 
includes the hashkey and value as well as names and values for attributes to set on the item. Call 
the put method of the DynamoDB document client.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create DynamoDB document client
var docClient = new AWS.DynamoDB.DocumentClient({ apiVersion: "2012-08-10" });

var params = { 
  TableName: "TABLE", 
  Item: { 
    HASHKEY: VALUE, 
    ATTRIBUTE_1: "STRING_VALUE", 

Using the DynamoDB Document Client 139

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/dynamodb/ddbdoc_get.js


AWS SDK for JavaScript Developer Guide for SDK v2

    ATTRIBUTE_2: VALUE_2, 
  },
};

docClient.put(params, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Success", data); 
  }
});

To run the example, type the following at the command line.

node ddbdoc_put.js

This sample code can be found here on GitHub.

Updating an Item in a Table

Create a Node.js module with the file name ddbdoc_update.js. Be sure to configure the 
SDK as previously shown. To access DynamoDB, create an AWS.DynamoDB.DocumentClient
object. Create a JSON object containing the parameters needed to write an item to the table, 
which in this example includes the name of the table, the key of the item to update, a set of
UpdateExpressions that define the attributes of the item to update with tokens you assign 
values to in the ExpressionAttributeValues parameters. Call the update method of the 
DynamoDB document client.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create DynamoDB document client
var docClient = new AWS.DynamoDB.DocumentClient({ apiVersion: "2012-08-10" });

// Create variables to hold numeric key values
var season = SEASON_NUMBER;
var episode = EPISODES_NUMBER;

var params = { 

Using the DynamoDB Document Client 140

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/dynamodb/ddbdoc_put.js


AWS SDK for JavaScript Developer Guide for SDK v2

  TableName: "EPISODES_TABLE", 
  Key: { 
    Season: season, 
    Episode: episode, 
  }, 
  UpdateExpression: "set Title = :t, Subtitle = :s", 
  ExpressionAttributeValues: { 
    ":t": "NEW_TITLE", 
    ":s": "NEW_SUBTITLE", 
  },
};

docClient.update(params, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Success", data); 
  }
});

To run the example, type the following at the command line.

node ddbdoc_update.js

This sample code can be found here on GitHub.

Querying a Table

This example queries a table that contains episode information about a video series, returning 
the episode titles and subtitles of second season episodes past episode 9 that contain a specified 
phrase in their subtitle.

Create a Node.js module with the file name ddbdoc_query.js. Be sure to configure the SDK as 
previously shown. To access DynamoDB, create an AWS.DynamoDB.DocumentClient object. 
Create a JSON object containing the parameters needed to query the table, which in this example 
includes the table name, the ExpressionAttributeValues needed by the query, and a
KeyConditionExpression that uses those values to define which items the query returns. Call 
the query method of the DynamoDB document client.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");

Using the DynamoDB Document Client 141

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/dynamodb/ddbdoc_update.js


AWS SDK for JavaScript Developer Guide for SDK v2

// Set the region
AWS.config.update({ region: "REGION" });

// Create DynamoDB document client
var docClient = new AWS.DynamoDB.DocumentClient({ apiVersion: "2012-08-10" });

var params = { 
  ExpressionAttributeValues: { 
    ":s": 2, 
    ":e": 9, 
    ":topic": "PHRASE", 
  }, 
  KeyConditionExpression: "Season = :s and Episode > :e", 
  FilterExpression: "contains (Subtitle, :topic)", 
  TableName: "EPISODES_TABLE",
};

docClient.query(params, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Success", data.Items); 
  }
});

To run the example, type the following at the command line.

node ddbdoc_query.js

This sample code can be found here on GitHub.

Deleting an Item from a Table

Create a Node.js module with the file name ddbdoc_delete.js. Be sure to configure the SDK 
as previously shown. To access DynamoDB, create an AWS.DynamoDB.DocumentClient object. 
Create a JSON object containing the parameters needed to delete an item in the table, which in 
this example includes the name of the table as well as a the name and value of the hashkey of the 
item you want to delete. Call the delete method of the DynamoDB document client.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region

Using the DynamoDB Document Client 142

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/dynamodb/ddbdoc_query.js


AWS SDK for JavaScript Developer Guide for SDK v2

AWS.config.update({ region: "REGION" });

// Create DynamoDB document client
var docClient = new AWS.DynamoDB.DocumentClient({ apiVersion: "2012-08-10" });

var params = { 
  Key: { 
    HASH_KEY: VALUE, 
  }, 
  TableName: "TABLE",
};

docClient.delete(params, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Success", data); 
  }
});

To run the example, type the following at the command line.

node ddbdoc_delete.js

This sample code can be found here on GitHub.

Amazon EC2 Examples

Amazon Elastic Compute Cloud (Amazon EC2) is a web service that provides virtual server hosting 
in the cloud. It is designed to make web-scale cloud computing easier for developers by providing 
resizeable compute capacity.

Amazon EC2 Examples 143

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/dynamodb/ddbdoc_delete.js


AWS SDK for JavaScript Developer Guide for SDK v2

The JavaScript API for Amazon EC2 is exposed through the AWS.EC2 client class. For more 
information about using the Amazon EC2 client class, see Class: AWS.EC2 in the API reference.

Topics

• Creating an Amazon EC2 Instance

• Managing Amazon EC2 Instances

• Working with Amazon EC2 Key Pairs

• Using Regions and Availability Zones with Amazon EC2

• Working with Security Groups in Amazon EC2

• Using Elastic IP Addresses in Amazon EC2

Creating an Amazon EC2 Instance

This Node.js code example shows:

• How to create an Amazon EC2 instance from a public Amazon Machine Image (AMI).

• How to create and assign tags to the new Amazon EC2 instance.

About the Example

In this example, you use a Node.js module to create an Amazon EC2 instance and assign both a 
key pair and tags to it. The code uses the SDK for JavaScript to create and tag an instance by using 
these methods of the Amazon EC2 client class:

• runInstances

• createTags

Prerequisite Tasks

To set up and run this example, first complete these tasks.

Creating an Amazon EC2 Instance 144

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/EC2.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/EC2.html#runInstances-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/EC2.html#createTags-property


AWS SDK for JavaScript Developer Guide for SDK v2

• Install Node.js. For more information, see the Node.js website.

• Create a shared configurations file with your user credentials. For more information about 
providing a shared credentials file, see Loading Credentials in Node.js from the Shared 
Credentials File.

• Create a key pair. For details, see Working with Amazon EC2 Key Pairs. You use the name of the 
key pair in this example.

Creating and Tagging an Instance

Create a Node.js module with the file name ec2_createinstances.js. Be sure to configure the 
SDK as previously shown.

Create an object to pass the parameters for the runInstances method of the AWS.EC2 client 
class, including the name of the key pair to assign and the ID of the AMI to run. To call the
runInstances method, create a promise for invoking an Amazon EC2 service object, passing the 
parameters. Then handle the response in the promise callback.

The code next adds a Name tag to a new instance, which the Amazon EC2 console recognizes and 
displays in the Name field of the instance list. You can add up to 50 tags to an instance, all of 
which can be added in a single call to the createTags method.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Load credentials and set region from JSON file
AWS.config.update({ region: "REGION" });

// Create EC2 service object
var ec2 = new AWS.EC2({ apiVersion: "2016-11-15" });

// AMI is amzn-ami-2011.09.1.x86_64-ebs
var instanceParams = { 
  ImageId: "AMI_ID", 
  InstanceType: "t2.micro", 
  KeyName: "KEY_PAIR_NAME", 
  MinCount: 1, 
  MaxCount: 1,
};

// Create a promise on an EC2 service object
var instancePromise = new AWS.EC2({ apiVersion: "2016-11-15" }) 

Creating an Amazon EC2 Instance 145

https://nodejs.org


AWS SDK for JavaScript Developer Guide for SDK v2

  .runInstances(instanceParams) 
  .promise();

// Handle promise's fulfilled/rejected states
instancePromise 
  .then(function (data) { 
    console.log(data); 
    var instanceId = data.Instances[0].InstanceId; 
    console.log("Created instance", instanceId); 
    // Add tags to the instance 
    tagParams = { 
      Resources: [instanceId], 
      Tags: [ 
        { 
          Key: "Name", 
          Value: "SDK Sample", 
        }, 
      ], 
    }; 
    // Create a promise on an EC2 service object 
    var tagPromise = new AWS.EC2({ apiVersion: "2016-11-15" }) 
      .createTags(tagParams) 
      .promise(); 
    // Handle promise's fulfilled/rejected states 
    tagPromise 
      .then(function (data) { 
        console.log("Instance tagged"); 
      }) 
      .catch(function (err) { 
        console.error(err, err.stack); 
      }); 
  }) 
  .catch(function (err) { 
    console.error(err, err.stack); 
  });

To run the example, type the following at the command line.

node ec2_createinstances.js

This sample code can be found here on GitHub.

Creating an Amazon EC2 Instance 146

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ec2/ec2_createinstances.js


AWS SDK for JavaScript Developer Guide for SDK v2

Managing Amazon EC2 Instances

This Node.js code example shows:

• How to retrieve basic information about your Amazon EC2 instances.

• How to start and stop detailed monitoring of an Amazon EC2 instance.

• How to start and stop an Amazon EC2 instance.

• How to reboot an Amazon EC2 instance.

The Scenario

In this example, you use a series of Node.js modules to perform several basic instance management 
operations. The Node.js modules use the SDK for JavaScript to manage instances by using these 
Amazon EC2 client class methods:

• describeInstances

• monitorInstances

• unmonitorInstances

• startInstances

• stopInstances

• rebootInstances

For more information about the lifecycle of Amazon EC2 instances, see Instance Lifecycle in the
Amazon EC2 User Guide for Linux Instances.

Prerequisite Tasks

To set up and run this example, first complete these tasks:

• Install Node.js. For more information about installing Node.js, see the Node.js website.

Managing Amazon EC2 Instances 147

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/EC2.html#describeInstances-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/EC2.html#monitorInstances-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/EC2.html#unmonitorInstances-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/EC2.html#startInstances-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/EC2.html#stopInstances-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/EC2.html#rebootInstances-property
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-lifecycle.html
https://nodejs.org


AWS SDK for JavaScript Developer Guide for SDK v2

• Create a shared configurations file with your user credentials. For more information about 
providing a shared credentials file, see Loading Credentials in Node.js from the Shared 
Credentials File.

• Create an Amazon EC2 instance. For more information about creating Amazon EC2 instances, 
see Amazon EC2 Instances in the Amazon EC2 User Guide for Linux Instances or Amazon EC2 
Instances in the Amazon EC2 User Guide for Windows Instances.

Describing Your Instances

Create a Node.js module with the file name ec2_describeinstances.js. Be sure to configure 
the SDK as previously shown. To access Amazon EC2, create an AWS.EC2 service object. Call the
describeInstances method of the Amazon EC2 service object to retrieve a detailed description 
of your instances.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create EC2 service object
var ec2 = new AWS.EC2({ apiVersion: "2016-11-15" });

var params = { 
  DryRun: false,
};

// Call EC2 to retrieve policy for selected bucket
ec2.describeInstances(params, function (err, data) { 
  if (err) { 
    console.log("Error", err.stack); 
  } else { 
    console.log("Success", JSON.stringify(data)); 
  }
});

To run the example, type the following at the command line.

node ec2_describeinstances.js

This sample code can be found here on GitHub.

Managing Amazon EC2 Instances 148

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Instances.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/Instances.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/Instances.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ec2/ec2_describeinstances.js


AWS SDK for JavaScript Developer Guide for SDK v2

Managing Instance Monitoring

Create a Node.js module with the file name ec2_monitorinstances.js. Be sure to configure 
the SDK as previously shown. To access Amazon EC2, create an AWS.EC2 service object. Add the 
instance IDs of the instances for which you want to control monitoring.

Based on the value of a command-line argument (ON or OFF), call either the monitorInstances
method of the Amazon EC2 service object to begin detailed monitoring of the specified instances 
or call the unmonitorInstances method. Use the DryRun parameter to test whether you have 
permission to change instance monitoring before you attempt to change the monitoring of these 
instances.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create EC2 service object
var ec2 = new AWS.EC2({ apiVersion: "2016-11-15" });

var params = { 
  InstanceIds: ["INSTANCE_ID"], 
  DryRun: true,
};

if (process.argv[2].toUpperCase() === "ON") { 
  // Call EC2 to start monitoring the selected instances 
  ec2.monitorInstances(params, function (err, data) { 
    if (err && err.code === "DryRunOperation") { 
      params.DryRun = false; 
      ec2.monitorInstances(params, function (err, data) { 
        if (err) { 
          console.log("Error", err); 
        } else if (data) { 
          console.log("Success", data.InstanceMonitorings); 
        } 
      }); 
    } else { 
      console.log("You don't have permission to change instance monitoring."); 
    } 
  });
} else if (process.argv[2].toUpperCase() === "OFF") { 

Managing Amazon EC2 Instances 149



AWS SDK for JavaScript Developer Guide for SDK v2

  // Call EC2 to stop monitoring the selected instances 
  ec2.unmonitorInstances(params, function (err, data) { 
    if (err && err.code === "DryRunOperation") { 
      params.DryRun = false; 
      ec2.unmonitorInstances(params, function (err, data) { 
        if (err) { 
          console.log("Error", err); 
        } else if (data) { 
          console.log("Success", data.InstanceMonitorings); 
        } 
      }); 
    } else { 
      console.log("You don't have permission to change instance monitoring."); 
    } 
  });
}

To run the example, type the following at the command line, specifying ON to begin detailed 
monitoring or OFF to discontinue monitoring.

node ec2_monitorinstances.js ON

This sample code can be found here on GitHub.

Starting and Stopping Instances

Create a Node.js module with the file name ec2_startstopinstances.js. Be sure to configure 
the SDK as previously shown. To access Amazon EC2, create an AWS.EC2 service object. Add the 
instance IDs of the instances you want to start or stop.

Based on the value of a command-line argument (START or STOP), call either the
startInstances method of the Amazon EC2 service object to start the specified instances, or 
the stopInstances method to stop them. Use the DryRun parameter to test whether you have 
permission before actually attempting to start or stop the selected instances.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create EC2 service object

Managing Amazon EC2 Instances 150

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ec2/ec2_monitorinstances.js


AWS SDK for JavaScript Developer Guide for SDK v2

var ec2 = new AWS.EC2({ apiVersion: "2016-11-15" });

var params = { 
  InstanceIds: [process.argv[3]], 
  DryRun: true,
};

if (process.argv[2].toUpperCase() === "START") { 
  // Call EC2 to start the selected instances 
  ec2.startInstances(params, function (err, data) { 
    if (err && err.code === "DryRunOperation") { 
      params.DryRun = false; 
      ec2.startInstances(params, function (err, data) { 
        if (err) { 
          console.log("Error", err); 
        } else if (data) { 
          console.log("Success", data.StartingInstances); 
        } 
      }); 
    } else { 
      console.log("You don't have permission to start instances."); 
    } 
  });
} else if (process.argv[2].toUpperCase() === "STOP") { 
  // Call EC2 to stop the selected instances 
  ec2.stopInstances(params, function (err, data) { 
    if (err && err.code === "DryRunOperation") { 
      params.DryRun = false; 
      ec2.stopInstances(params, function (err, data) { 
        if (err) { 
          console.log("Error", err); 
        } else if (data) { 
          console.log("Success", data.StoppingInstances); 
        } 
      }); 
    } else { 
      console.log("You don't have permission to stop instances"); 
    } 
  });
}

To run the example, type the following at the command line specifying START to start the 
instances or STOP to stop them.

Managing Amazon EC2 Instances 151



AWS SDK for JavaScript Developer Guide for SDK v2

node ec2_startstopinstances.js START INSTANCE_ID

This sample code can be found here on GitHub.

Rebooting Instances

Create a Node.js module with the file name ec2_rebootinstances.js. Be sure to configure 
the SDK as previously shown. To access Amazon EC2, create an Amazon EC2 service object. Add 
the instance IDs of the instances you want to reboot. Call the rebootInstances method of 
the AWS.EC2 service object to reboot the specified instances. Use the DryRun parameter to test 
whether you have permission to reboot these instances before actually attempting to reboot them.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create EC2 service object
var ec2 = new AWS.EC2({ apiVersion: "2016-11-15" });

var params = { 
  InstanceIds: ["INSTANCE_ID"], 
  DryRun: true,
};

// Call EC2 to reboot instances
ec2.rebootInstances(params, function (err, data) { 
  if (err && err.code === "DryRunOperation") { 
    params.DryRun = false; 
    ec2.rebootInstances(params, function (err, data) { 
      if (err) { 
        console.log("Error", err); 
      } else if (data) { 
        console.log("Success", data); 
      } 
    }); 
  } else { 
    console.log("You don't have permission to reboot instances."); 
  }
});

To run the example, type the following at the command line.

Managing Amazon EC2 Instances 152

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ec2/ec2_startstopinstances.js


AWS SDK for JavaScript Developer Guide for SDK v2

node ec2_rebootinstances.js

This sample code can be found here on GitHub.

Working with Amazon EC2 Key Pairs

This Node.js code example shows:

• How to retrieve information about your key pairs.

• How to create a key pair to access an Amazon EC2 instance.

• How to delete an existing key pair.

The Scenario

Amazon EC2 uses public–key cryptography to encrypt and decrypt login information. Public–key 
cryptography uses a public key to encrypt data, then the recipient uses the private key to decrypt 
the data. The public and private keys are known as a key pair.

In this example, you use a series of Node.js modules to perform several Amazon EC2 key pair 
management operations. The Node.js modules use the SDK for JavaScript to manage instances by 
using these methods of the Amazon EC2 client class:

• createKeyPair

• deleteKeyPair

• describeKeyPairs

For more information about the Amazon EC2 key pairs, see Amazon EC2 Key Pairs in the Amazon 
EC2 User Guide for Linux Instances or Amazon EC2 Key Pairs and Windows Instances in the Amazon 
EC2 User Guide for Windows Instances.

Prerequisite Tasks

To set up and run this example, first complete these tasks:

Working with Amazon EC2 Key Pairs 153

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ec2/ec2_rebootinstances.js
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/EC2.html#createKeyPair-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/EC2.html#deleteKeyPair-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/EC2.html#describeKeyPairs-property
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/ec2-key-pairs.html


AWS SDK for JavaScript Developer Guide for SDK v2

• Install Node.js. For more information about installing Node.js, see the Node.js website.

• Create a shared configurations file with your user credentials. For more information about 
providing a shared credentials file, see Loading Credentials in Node.js from the Shared 
Credentials File.

Describing Your Key Pairs

Create a Node.js module with the file name ec2_describekeypairs.js. Be sure to configure 
the SDK as previously shown. To access Amazon EC2, create an AWS.EC2 service object. Create 
an empty JSON object to hold the parameters needed by the describeKeyPairs method to 
return descriptions for all your key pairs. You can also provide an array of names of key pairs in the
KeyName portion of the parameters in the JSON file to the describeKeyPairs method.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create EC2 service object
var ec2 = new AWS.EC2({ apiVersion: "2016-11-15" });

// Retrieve key pair descriptions; no params needed
ec2.describeKeyPairs(function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Success", JSON.stringify(data.KeyPairs)); 
  }
});

To run the example, type the following at the command line.

node ec2_describekeypairs.js

This sample code can be found here on GitHub.

Creating a Key Pair

Each key pair requires a name. Amazon EC2 associates the public key with the name that you 
specify as the key name. Create a Node.js module with the file name ec2_createkeypair.js. Be 

Working with Amazon EC2 Key Pairs 154

https://nodejs.org
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ec2/ec2_describekeypairs.js


AWS SDK for JavaScript Developer Guide for SDK v2

sure to configure the SDK as previously shown. To access Amazon EC2, create an AWS.EC2 service 
object. Create the JSON parameters to specify the name of the key pair, then pass them to call the
createKeyPair method.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create EC2 service object
var ec2 = new AWS.EC2({ apiVersion: "2016-11-15" });

var params = { 
  KeyName: "KEY_PAIR_NAME",
};

// Create the key pair
ec2.createKeyPair(params, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log(JSON.stringify(data)); 
  }
});

To run the example, type the following at the command line.

node ec2_createkeypair.js

This sample code can be found here on GitHub.

Deleting a Key Pair

Create a Node.js module with the file name ec2_deletekeypair.js. Be sure to configure 
the SDK as previously shown. To access Amazon EC2, create an AWS.EC2 service object. Create 
the JSON parameters to specify the name of the key pair you want to delete. Then call the
deleteKeyPair method.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region

Working with Amazon EC2 Key Pairs 155

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ec2/ec2_createkeypair.js


AWS SDK for JavaScript Developer Guide for SDK v2

AWS.config.update({ region: "REGION" });

// Create EC2 service object
var ec2 = new AWS.EC2({ apiVersion: "2016-11-15" });

var params = { 
  KeyName: "KEY_PAIR_NAME",
};

// Delete the key pair
ec2.deleteKeyPair(params, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Key Pair Deleted"); 
  }
});

To run the example, type the following at the command line.

node ec2_deletekeypair.js

This sample code can be found here on GitHub.

Using Regions and Availability Zones with Amazon EC2

This Node.js code example shows:

• How to retrieve descriptions for Regions and Availability Zones.

The Scenario

Amazon EC2 is hosted in multiple locations worldwide. These locations are composed of Regions 
and Availability Zones. Each Region is a separate geographic area. Each Region has multiple, 
isolated locations known as Availability Zones. Amazon EC2 provides the ability to place instances 
and data in multiple locations.

Using Regions and Availability Zones with Amazon EC2 156

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ec2/ec2_deletekeypair.js


AWS SDK for JavaScript Developer Guide for SDK v2

In this example, you use a series of Node.js modules to retrieve details about Regions and 
Availability Zones. The Node.js modules use the SDK for JavaScript to manage instances by using 
the following methods of the Amazon EC2 client class:

• describeAvailabilityZones

• describeRegions

For more information about Regions and Availability Zones, see Regions and Availability Zones in 
the Amazon EC2 User Guide for Linux Instances or Regions and Availability Zones in the Amazon 
EC2 User Guide for Windows Instances.

Prerequisite Tasks

To set up and run this example, you must first complete these tasks:

• Install Node.js. For more information about installing Node.js, see the Node.js website.

• Create a shared configurations file with your user credentials. For more information about 
providing a shared credentials file, see Loading Credentials in Node.js from the Shared 
Credentials File.

Describing Regions and Availability Zones

Create a Node.js module with the file name ec2_describeregionsandzones.js. Be sure to 
configure the SDK as previously shown. To access Amazon EC2, create an AWS.EC2 service object. 
Create an empty JSON object to pass as parameters, which returns all available descriptions. Then 
call the describeRegions and describeAvailabilityZones methods.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create EC2 service object
var ec2 = new AWS.EC2({ apiVersion: "2016-11-15" });

var params = {};

// Retrieves all regions/endpoints that work with EC2
ec2.describeRegions(params, function (err, data) { 

Using Regions and Availability Zones with Amazon EC2 157

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/EC2.html#describeAvailabilityZones-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/EC2.html#describeRegions-property
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/using-regions-availability-zones.html
https://nodejs.org


AWS SDK for JavaScript Developer Guide for SDK v2

  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Regions: ", data.Regions); 
  }
});

// Retrieves availability zones only for region of the ec2 service object
ec2.describeAvailabilityZones(params, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Availability Zones: ", data.AvailabilityZones); 
  }
});

To run the example, type the following at the command line.

node ec2_describeregionsandzones.js

This sample code can be found here on GitHub.

Working with Security Groups in Amazon EC2

This Node.js code example shows:

• How to retrieve information about your security groups.

• How to create a security group to access an Amazon EC2 instance.

• How to delete an existing security group.

The Scenario

An Amazon EC2 security group acts as a virtual firewall that controls the traffic for one or more 
instances. You add rules to each security group to allow traffic to or from its associated instances. 
You can modify the rules for a security group at any time; the new rules are automatically applied 
to all instances that are associated with the security group.

Working with Security Groups in Amazon EC2 158

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ec2/ec2_describeregionsandzones.js


AWS SDK for JavaScript Developer Guide for SDK v2

In this example, you use a series of Node.js modules to perform several Amazon EC2 operations 
involving security groups. The Node.js modules use the SDK for JavaScript to manage instances by 
using the following methods of the Amazon EC2 client class:

• describeSecurityGroups

• authorizeSecurityGroupIngress

• createSecurityGroup

• describeVpcs

• deleteSecurityGroup

For more information about the Amazon EC2 security groups, see Amazon EC2 Amazon Security 
Groups for Linux Instances in the Amazon EC2 User Guide for Linux Instances or Amazon EC2 
Security Groups for Windows Instances in the Amazon EC2 User Guide for Windows Instances.

Prerequisite Tasks

To set up and run this example, first complete these tasks:

• Install Node.js. For more information about installing Node.js, see the Node.js website.

• Create a shared configurations file with your user credentials. For more information about 
providing a shared credentials file, see Loading Credentials in Node.js from the Shared 
Credentials File.

Describing Your Security Groups

Create a Node.js module with the file name ec2_describesecuritygroups.js. Be sure to 
configure the SDK as previously shown. To access Amazon EC2, create an AWS.EC2 service object. 
Create a JSON object to pass as parameters, including the group IDs for the security groups you 
want to describe. Then call the describeSecurityGroups method of the Amazon EC2 service 
object.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create EC2 service object
var ec2 = new AWS.EC2({ apiVersion: "2016-11-15" });

Working with Security Groups in Amazon EC2 159

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/EC2.html#describeSecurityGroups-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/EC2.html#authorizeSecurityGroupIngress-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/EC2.html#createSecurityGroup-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/EC2.html#describeVpcs-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/EC2.html#deleteSecurityGroup-property
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/using-network-security.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/using-network-security.html
https://nodejs.org


AWS SDK for JavaScript Developer Guide for SDK v2

var params = { 
  GroupIds: ["SECURITY_GROUP_ID"],
};

// Retrieve security group descriptions
ec2.describeSecurityGroups(params, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Success", JSON.stringify(data.SecurityGroups)); 
  }
});

To run the example, type the following at the command line.

node ec2_describesecuritygroups.js

This sample code can be found here on GitHub.

Creating a Security Group and Rules

Create a Node.js module with the file name ec2_createsecuritygroup.js. Be sure to 
configure the SDK as previously shown. To access Amazon EC2, create an AWS.EC2 service object. 
Create a JSON object for the parameters that specify the name of the security group, a description, 
and the ID for the VPC. Pass the parameters to the createSecurityGroup method.

After you successfully create the security group, you can define rules for allowing inbound 
traffic. Create a JSON object for parameters that specify the IP protocol and inbound 
ports on which the Amazon EC2 instance will receive traffic. Pass the parameters to the
authorizeSecurityGroupIngress method.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Load credentials and set region from JSON file
AWS.config.update({ region: "REGION" });

// Create EC2 service object
var ec2 = new AWS.EC2({ apiVersion: "2016-11-15" });

// Variable to hold a ID of a VPC
var vpc = null;

Working with Security Groups in Amazon EC2 160

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ec2/ec2_describesecuritygroups.js


AWS SDK for JavaScript Developer Guide for SDK v2

// Retrieve the ID of a VPC
ec2.describeVpcs(function (err, data) { 
  if (err) { 
    console.log("Cannot retrieve a VPC", err); 
  } else { 
    vpc = data.Vpcs[0].VpcId; 
    var paramsSecurityGroup = { 
      Description: "DESCRIPTION", 
      GroupName: "SECURITY_GROUP_NAME", 
      VpcId: vpc, 
    }; 
    // Create the instance 
    ec2.createSecurityGroup(paramsSecurityGroup, function (err, data) { 
      if (err) { 
        console.log("Error", err); 
      } else { 
        var SecurityGroupId = data.GroupId; 
        console.log("Success", SecurityGroupId); 
        var paramsIngress = { 
          GroupId: "SECURITY_GROUP_ID", 
          IpPermissions: [ 
            { 
              IpProtocol: "tcp", 
              FromPort: 80, 
              ToPort: 80, 
              IpRanges: [{ CidrIp: "0.0.0.0/0" }], 
            }, 
            { 
              IpProtocol: "tcp", 
              FromPort: 22, 
              ToPort: 22, 
              IpRanges: [{ CidrIp: "0.0.0.0/0" }], 
            }, 
          ], 
        }; 
        ec2.authorizeSecurityGroupIngress(paramsIngress, function (err, data) { 
          if (err) { 
            console.log("Error", err); 
          } else { 
            console.log("Ingress Successfully Set", data); 
          } 
        }); 
      } 

Working with Security Groups in Amazon EC2 161



AWS SDK for JavaScript Developer Guide for SDK v2

    }); 
  }
});

To run the example, type the following at the command line.

node ec2_createsecuritygroup.js

This sample code can be found here on GitHub.

Deleting a Security Group

Create a Node.js module with the file name ec2_deletesecuritygroup.js. Be sure to 
configure the SDK as previously shown. To access Amazon EC2, create an AWS.EC2 service object. 
Create the JSON parameters to specify the name of the security group to delete. Then call the
deleteSecurityGroup method.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create EC2 service object
var ec2 = new AWS.EC2({ apiVersion: "2016-11-15" });

var params = { 
  GroupId: "SECURITY_GROUP_ID",
};

// Delete the security group
ec2.deleteSecurityGroup(params, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Security Group Deleted"); 
  }
});

To run the example, type the following at the command line.

node ec2_deletesecuritygroup.js

Working with Security Groups in Amazon EC2 162

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ec2/ec2_createsecuritygroup.js


AWS SDK for JavaScript Developer Guide for SDK v2

This sample code can be found here on GitHub.

Using Elastic IP Addresses in Amazon EC2

This Node.js code example shows:

• How to retrieve descriptions of your Elastic IP addresses.

• How to allocate and release an Elastic IP address.

• How to associate an Elastic IP address with an Amazon EC2 instance.

The Scenario

An Elastic IP address is a static IP address designed for dynamic cloud computing. An Elastic IP 
address is associated with your AWS account. It is a public IP address, which is reachable from the 
Internet. If your instance does not have a public IP address, you can associate an Elastic IP address 
with your instance to enable communication with the Internet.

In this example, you use a series of Node.js modules to perform several Amazon EC2 operations 
involving Elastic IP addresses. The Node.js modules use the SDK for JavaScript to manage Elastic IP 
addresses by using these methods of the Amazon EC2 client class:

• describeAddresses

• allocateAddress

• associateAddress

• releaseAddress

For more information about Elastic IP addresses in Amazon EC2, see Elastic IP Addresses in the
Amazon EC2 User Guide for Linux Instances or Elastic IP Addresses in the Amazon EC2 User Guide for 
Windows Instances.

Prerequisite Tasks

To set up and run this example, first complete these tasks:

Using Elastic IP Addresses in Amazon EC2 163

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ec2/ec2_deletesecuritygroup.js
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/EC2.html#describeAddresses-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/EC2.html#allocateAddress-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/EC2.html#associateAddress-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/EC2.html#releaseAddress-property
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/elastic-ip-addresses-eip.html


AWS SDK for JavaScript Developer Guide for SDK v2

• Install Node.js. For more information about installing Node.js, see the Node.js website.

• Create a shared configurations file with your user credentials. For more information about 
providing a shared credentials file, see Loading Credentials in Node.js from the Shared 
Credentials File.

• Create an Amazon EC2 instance. For more information about creating Amazon EC2 instances, 
see Amazon EC2 Instances in the Amazon EC2 User Guide for Linux Instances or Amazon EC2 
Instances in the Amazon EC2 User Guide for Windows Instances.

Describing Elastic IP Addresses

Create a Node.js module with the file name ec2_describeaddresses.js. Be sure to configure 
the SDK as previously shown. To access Amazon EC2, create an AWS.EC2 service object. Create 
a JSON object to pass as parameters, filtering the addresses returned by those in your VPC. To 
retrieve descriptions of all your Elastic IP addresses, omit a filter from the parameters JSON. Then 
call the describeAddresses method of the Amazon EC2 service object.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create EC2 service object
var ec2 = new AWS.EC2({ apiVersion: "2016-11-15" });

var params = { 
  Filters: [{ Name: "domain", Values: ["vpc"] }],
};

// Retrieve Elastic IP address descriptions
ec2.describeAddresses(params, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Success", JSON.stringify(data.Addresses)); 
  }
});

To run the example, type the following at the command line.

Using Elastic IP Addresses in Amazon EC2 164

https://nodejs.org
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Instances.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/Instances.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/Instances.html


AWS SDK for JavaScript Developer Guide for SDK v2

node ec2_describeaddresses.js

This sample code can be found here on GitHub.

Allocating and Associating an Elastic IP Address with an Amazon EC2 Instance

Create a Node.js module with the file name ec2_allocateaddress.js. Be sure to configure the 
SDK as previously shown. To access Amazon EC2, create an AWS.EC2 service object. Create a JSON 
object for the parameters used to allocate an Elastic IP address, which in this case specifies the
Domain is a VPC. Call the allocateAddress method of the Amazon EC2 service object.

If the call succeeds, the data parameter to the callback function has an AllocationId property 
that identifies the allocated Elastic IP address.

Create a JSON object for the parameters used to associate an Elastic IP address to an Amazon EC2 
instance, including the AllocationId from the newly allocated address and the InstanceId
of the Amazon EC2 instance. Then call the associateAddresses method of the Amazon EC2 
service object.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create EC2 service object
var ec2 = new AWS.EC2({ apiVersion: "2016-11-15" });

var paramsAllocateAddress = { 
  Domain: "vpc",
};

// Allocate the Elastic IP address
ec2.allocateAddress(paramsAllocateAddress, function (err, data) { 
  if (err) { 
    console.log("Address Not Allocated", err); 
  } else { 
    console.log("Address allocated:", data.AllocationId); 
    var paramsAssociateAddress = { 
      AllocationId: data.AllocationId, 
      InstanceId: "INSTANCE_ID", 
    }; 
    // Associate the new Elastic IP address with an EC2 instance 

Using Elastic IP Addresses in Amazon EC2 165

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ec2/ec2_describeaddresses.js


AWS SDK for JavaScript Developer Guide for SDK v2

    ec2.associateAddress(paramsAssociateAddress, function (err, data) { 
      if (err) { 
        console.log("Address Not Associated", err); 
      } else { 
        console.log("Address associated:", data.AssociationId); 
      } 
    }); 
  }
});

To run the example, type the following at the command line.

node ec2_allocateaddress.js

This sample code can be found here on GitHub.

Releasing an Elastic IP Address

Create a Node.js module with the file name ec2_releaseaddress.js. Be sure to configure the 
SDK as previously shown. To access Amazon EC2, create an AWS.EC2 service object. Create a JSON 
object for the parameters used to release an Elastic IP address, which in this case specifies the
AllocationId for the Elastic IP address. Releasing an Elastic IP address also disassociates it from 
any Amazon EC2 instance. Call the releaseAddress method of the Amazon EC2 service object.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create EC2 service object
var ec2 = new AWS.EC2({ apiVersion: "2016-11-15" });

var paramsReleaseAddress = { 
  AllocationId: "ALLOCATION_ID",
};

// Disassociate the Elastic IP address from EC2 instance
ec2.releaseAddress(paramsReleaseAddress, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Address released"); 

Using Elastic IP Addresses in Amazon EC2 166

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ec2/ec2_allocateaddress.js


AWS SDK for JavaScript Developer Guide for SDK v2

  }
});

To run the example, type the following at the command line.

node ec2_releaseaddress.js

This sample code can be found here on GitHub.

AWS Elemental MediaConvert Examples

AWS Elemental MediaConvert is a file-based video transcoding service with broadcast-grade 
features. You can use it to create assets for broadcast and for video-on-demand (VOD) delivery 
across the internet. For more information, see the AWS Elemental MediaConvert User Guide.

The JavaScript API for MediaConvert is exposed through the AWS.MediaConvert client class. For 
more information, see Class: AWS.MediaConvert in the API reference.

Topics

• Getting Your Region-Specific Endpoint for MediaConvert

• Creating and Managing Transcoding Jobs in MediaConvert

• Using Job Templates in MediaConvert

Getting Your Region-Specific Endpoint for MediaConvert

This Node.js code example shows:

• How to retrieve your region-specific endpoint from MediaConvert.

The Scenario

In this example, you use a Node.js module to call MediaConvert and retrieve your region-specific 
endpoint. You can retrieve your endpoint URL from the service default endpoint and so do not yet 

MediaConvert Examples 167

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ec2/ec2_releaseaddress.js
https://docs.aws.amazon.com/mediaconvert/latest/ug/
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/MediaConvert.html


AWS SDK for JavaScript Developer Guide for SDK v2

need your region-specific endpoint. The code uses the SDK for JavaScript to retrieve this endpoint 
by using this method of the MediaConvert client class:

• describeEndpoints

Important

The default Node.js HTTP/HTTPS agent creates a new TCP connection for every new 
request. To avoid the cost of establishing a new connection, the AWS SDK for JavaScript 
reuses TCP connections. For more information, see Reusing Connections with Keep-Alive in 
Node.js.

Prerequisite Tasks

To set up and run this example, first complete these tasks:

• Install Node.js. For more information, see the Node.js website.

• Create a shared configurations file with your user credentials. For more information about 
providing a shared credentials file, see Loading Credentials in Node.js from the Shared 
Credentials File.

• Create an IAM role that gives MediaConvert access to your input files and the Amazon S3 buckets 
where your output files are stored. For details, see Set Up IAM Permissions in the AWS Elemental 
MediaConvert User Guide.

Getting Your Endpoint URL

Create a Node.js module with the file name emc_getendpoint.js. Be sure to configure the SDK 
as previously shown.

Create an object to pass the empty request parameters for the describeEndpoints method of 
the AWS.MediaConvert client class. To call the describeEndpoints method, create a promise 
for invoking an MediaConvert service object, passing the parameters. Handle the response in the 
promise callback.

// Load the SDK for JavaScript.
const aws = require("aws-sdk");

Getting Your Region-Specific Endpoint 168

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/MediaConvert.html#describeEndpoints-property
https://nodejs.org
https://docs.aws.amazon.com/mediaconvert/latest/ug/iam-role.html


AWS SDK for JavaScript Developer Guide for SDK v2

// Set the AWS Region.
aws.config.update({ region: "us-west-2" });

// Create the client.
const mediaConvert = new aws.MediaConvert({ apiVersion: "2017-08-29" });

exports.handler = async (event, context) => { 
  // Create empty request parameters 
  const params = { 
    MaxResults: 0, 
  }; 

  try { 
    const { Endpoints } = await mediaConvert 
      .describeEndpoints(params) 
      .promise(); 
    console.log("Your MediaConvert endpoint is ", Endpoints); 
  } catch (err) { 
    console.log("MediaConvert Error", err); 
  }
};

To run the example, type the following at the command line.

node emc_getendpoint.js

This sample code can be found here on GitHub.

Creating and Managing Transcoding Jobs in MediaConvert

This Node.js code example shows:

• How to specify the region-specific endpoint to use with MediaConvert.

• How to create transcoding jobs in MediaConvert.

• How to cancel a transcoding job.

• How to retrieve the JSON for a completed transcoding job.

Creating and Managing Jobs 169

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/mediaconvert/emc_getendpoint.js


AWS SDK for JavaScript Developer Guide for SDK v2

• How to retrieve a JSON array for up to 20 of the most recently created jobs.

The Scenario

In this example, you use a Node.js module to call MediaConvert to create and manage transcoding 
jobs. The code uses the SDK for JavaScript to do this by using these methods of the MediaConvert 
client class:

• createJob

• cancelJob

• getJob

• listJobs

Prerequisite Tasks

To set up and run this example, first complete these tasks:

• Install Node.js. For more information, see the Node.js website.

• Create a shared configurations file with your user credentials. For more information about 
providing a shared credentials file, see Loading Credentials in Node.js from the Shared 
Credentials File.

• Create and configure Amazon S3 buckets that provide storage for job input files and output files. 
For details, see Create Storage for Files in the AWS Elemental MediaConvert User Guide.

• Upload the input video to the Amazon S3 bucket you provisioned for input storage. For a list of 
supported input video codecs and containers, see Supported Input Codecs and Containers in the
AWS Elemental MediaConvert User Guide.

• Create an IAM role that gives MediaConvert access to your input files and the Amazon S3 buckets 
where your output files are stored. For details, see Set Up IAM Permissions in the AWS Elemental 
MediaConvert User Guide.

Configuring the SDK

Configure the SDK for JavaScript by creating a global configuration object, and then setting the 
Region for your code. In this example, the Region is set to us-west-2. Because MediaConvert 
uses custom endpoints for each account, you must also configure the AWS.MediaConvert

Creating and Managing Jobs 170

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/MediaConvert.html#createJob-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/MediaConvert.html#cancelJob-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/MediaConvert.html#getJob-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/MediaConvert.html#listJobs-property
https://nodejs.org
https://docs.aws.amazon.com/mediaconvert/latest/ug/set-up-file-locations.html
https://docs.aws.amazon.com/mediaconvert/latest/ug/reference-codecs-containers-input.html
https://docs.aws.amazon.com/mediaconvert/latest/ug/iam-role.html


AWS SDK for JavaScript Developer Guide for SDK v2

client class to use your region-specific endpoint. To do this, set the endpoint parameter on
AWS.config.mediaconvert.

// Load the SDK for JavaScript
var AWS = require("aws-sdk");
// Set the Region
AWS.config.update({ region: "us-west-2" });
// Set the custom endpoint for your account
AWS.config.mediaconvert = { endpoint: "ACCOUNT_ENDPOINT" };

Defining a Simple Transcoding Job

Create a Node.js module with the file name emc_createjob.js. Be sure to configure the SDK as 
previously shown. Create the JSON that defines the transcode job parameters.

These parameters are quite detailed. You can use the AWS Elemental MediaConvert console to 
generate the JSON job parameters by choosing your job settings in the console, and then choosing
Show job JSON at the bottom of the Job section. This example shows the JSON for a simple job.

var params = { 
  Queue: "JOB_QUEUE_ARN", 
  UserMetadata: { 
    Customer: "Amazon", 
  }, 
  Role: "IAM_ROLE_ARN", 
  Settings: { 
    OutputGroups: [ 
      { 
        Name: "File Group", 
        OutputGroupSettings: { 
          Type: "FILE_GROUP_SETTINGS", 
          FileGroupSettings: { 
            Destination: "s3://OUTPUT_BUCKET_NAME/", 
          }, 
        }, 
        Outputs: [ 
          { 
            VideoDescription: { 
              ScalingBehavior: "DEFAULT", 
              TimecodeInsertion: "DISABLED", 
              AntiAlias: "ENABLED", 
              Sharpness: 50, 

Creating and Managing Jobs 171

https://console.aws.amazon.com/mediaconvert/


AWS SDK for JavaScript Developer Guide for SDK v2

              CodecSettings: { 
                Codec: "H_264", 
                H264Settings: { 
                  InterlaceMode: "PROGRESSIVE", 
                  NumberReferenceFrames: 3, 
                  Syntax: "DEFAULT", 
                  Softness: 0, 
                  GopClosedCadence: 1, 
                  GopSize: 90, 
                  Slices: 1, 
                  GopBReference: "DISABLED", 
                  SlowPal: "DISABLED", 
                  SpatialAdaptiveQuantization: "ENABLED", 
                  TemporalAdaptiveQuantization: "ENABLED", 
                  FlickerAdaptiveQuantization: "DISABLED", 
                  EntropyEncoding: "CABAC", 
                  Bitrate: 5000000, 
                  FramerateControl: "SPECIFIED", 
                  RateControlMode: "CBR", 
                  CodecProfile: "MAIN", 
                  Telecine: "NONE", 
                  MinIInterval: 0, 
                  AdaptiveQuantization: "HIGH", 
                  CodecLevel: "AUTO", 
                  FieldEncoding: "PAFF", 
                  SceneChangeDetect: "ENABLED", 
                  QualityTuningLevel: "SINGLE_PASS", 
                  FramerateConversionAlgorithm: "DUPLICATE_DROP", 
                  UnregisteredSeiTimecode: "DISABLED", 
                  GopSizeUnits: "FRAMES", 
                  ParControl: "SPECIFIED", 
                  NumberBFramesBetweenReferenceFrames: 2, 
                  RepeatPps: "DISABLED", 
                  FramerateNumerator: 30, 
                  FramerateDenominator: 1, 
                  ParNumerator: 1, 
                  ParDenominator: 1, 
                }, 
              }, 
              AfdSignaling: "NONE", 
              DropFrameTimecode: "ENABLED", 
              RespondToAfd: "NONE", 
              ColorMetadata: "INSERT", 
            }, 

Creating and Managing Jobs 172



AWS SDK for JavaScript Developer Guide for SDK v2

            AudioDescriptions: [ 
              { 
                AudioTypeControl: "FOLLOW_INPUT", 
                CodecSettings: { 
                  Codec: "AAC", 
                  AacSettings: { 
                    AudioDescriptionBroadcasterMix: "NORMAL", 
                    RateControlMode: "CBR", 
                    CodecProfile: "LC", 
                    CodingMode: "CODING_MODE_2_0", 
                    RawFormat: "NONE", 
                    SampleRate: 48000, 
                    Specification: "MPEG4", 
                    Bitrate: 64000, 
                  }, 
                }, 
                LanguageCodeControl: "FOLLOW_INPUT", 
                AudioSourceName: "Audio Selector 1", 
              }, 
            ], 
            ContainerSettings: { 
              Container: "MP4", 
              Mp4Settings: { 
                CslgAtom: "INCLUDE", 
                FreeSpaceBox: "EXCLUDE", 
                MoovPlacement: "PROGRESSIVE_DOWNLOAD", 
              }, 
            }, 
            NameModifier: "_1", 
          }, 
        ], 
      }, 
    ], 
    AdAvailOffset: 0, 
    Inputs: [ 
      { 
        AudioSelectors: { 
          "Audio Selector 1": { 
            Offset: 0, 
            DefaultSelection: "NOT_DEFAULT", 
            ProgramSelection: 1, 
            SelectorType: "TRACK", 
            Tracks: [1], 
          }, 

Creating and Managing Jobs 173



AWS SDK for JavaScript Developer Guide for SDK v2

        }, 
        VideoSelector: { 
          ColorSpace: "FOLLOW", 
        }, 
        FilterEnable: "AUTO", 
        PsiControl: "USE_PSI", 
        FilterStrength: 0, 
        DeblockFilter: "DISABLED", 
        DenoiseFilter: "DISABLED", 
        TimecodeSource: "EMBEDDED", 
        FileInput: "s3://INPUT_BUCKET_AND_FILE_NAME", 
      }, 
    ], 
    TimecodeConfig: { 
      Source: "EMBEDDED", 
    }, 
  },
};

Creating a Transcoding Job

After creating the job parameters JSON, call the createJob method by creating a promise for 
invoking an AWS.MediaConvert service object, passing the parameters. Then handle the response 
in the promise callback. The ID of the job created is returned in the response data.

// Create a promise on a MediaConvert object
var endpointPromise = new AWS.MediaConvert({ apiVersion: "2017-08-29" }) 
  .createJob(params) 
  .promise();

// Handle promise's fulfilled/rejected status
endpointPromise.then( 
  function (data) { 
    console.log("Job created! ", data); 
  }, 
  function (err) { 
    console.log("Error", err); 
  }
);

To run the example, type the following at the command line.

Creating and Managing Jobs 174



AWS SDK for JavaScript Developer Guide for SDK v2

node emc_createjob.js

This sample code can be found here on GitHub.

Canceling a Transcoding Job

Create a Node.js module with the file name emc_canceljob.js. Be sure to configure the SDK 
as previously shown. Create the JSON that includes the ID of the job to cancel. Then call the
cancelJob method by creating a promise for invoking an AWS.MediaConvert service object, 
passing the parameters. Handle the response in the promise callback.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the Region
AWS.config.update({ region: "us-west-2" });
// Set MediaConvert to customer endpoint
AWS.config.mediaconvert = { endpoint: "ACCOUNT_ENDPOINT" };

var params = { 
  Id: "JOB_ID" /* required */,
};

// Create a promise on a MediaConvert object
var endpointPromise = new AWS.MediaConvert({ apiVersion: "2017-08-29" }) 
  .cancelJob(params) 
  .promise();

// Handle promise's fulfilled/rejected status
endpointPromise.then( 
  function (data) { 
    console.log("Job  " + params.Id + " is canceled"); 
  }, 
  function (err) { 
    console.log("Error", err); 
  }
);

To run the example, type the following at the command line.

node ec2_canceljob.js

Creating and Managing Jobs 175

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/mediaconvert/emc_createjob.js


AWS SDK for JavaScript Developer Guide for SDK v2

This sample code can be found here on GitHub.

Listing Recent Transcoding Jobs

Create a Node.js module with the file name emc_listjobs.js. Be sure to configure the SDK as 
previously shown.

Create the parameters JSON, including values to specify whether to sort the list in ASCENDING, or
DESCENDING order, the ARN of the job queue to check, and the status of jobs to include. Then call 
the listJobs method by creating a promise for invoking an AWS.MediaConvert service object, 
passing the parameters. Handle the response in the promise callback.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the Region
AWS.config.update({ region: "us-west-2" });
// Set the customer endpoint
AWS.config.mediaconvert = { endpoint: "ACCOUNT_ENDPOINT" };

var params = { 
  MaxResults: 10, 
  Order: "ASCENDING", 
  Queue: "QUEUE_ARN", 
  Status: "SUBMITTED",
};

// Create a promise on a MediaConvert object
var endpointPromise = new AWS.MediaConvert({ apiVersion: "2017-08-29" }) 
  .listJobs(params) 
  .promise();

// Handle promise's fulfilled/rejected status
endpointPromise.then( 
  function (data) { 
    console.log("Jobs: ", data); 
  }, 
  function (err) { 
    console.log("Error", err); 
  }
);

To run the example, type the following at the command line.

Creating and Managing Jobs 176

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/mediaconvert/emc_canceljob.js


AWS SDK for JavaScript Developer Guide for SDK v2

node emc_listjobs.js

This sample code can be found here on GitHub.

Using Job Templates in MediaConvert

This Node.js code example shows:

• How to create MediaConvert job templates.

• How to use a job template to create a transcoding job.

• How to list all your job templates.

• How to delete job templates.

The Scenario

The JSON required to create a transcoding job in MediaConvert is detailed, containing a large 
number of settings. You can greatly simplify job creation by saving known-good settings in a job 
template that you can use to create subsequent jobs. In this example, you use a Node.js module to 
call MediaConvert to create, use, and manage job templates. The code uses the SDK for JavaScript 
to do this by using these methods of the MediaConvert client class:

• createJobTemplate

• createJob

• deleteJobTemplate

• listJobTemplates

Prerequisite Tasks

To set up and run this example, first complete these tasks:

• Install Node.js. For more information, see the Node.js website.

Using Job Templates 177

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/mediaconvert/emc_listjobs.js
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/MediaConvert.html#createJobTemplate-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/MediaConvert.html#createJob-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/MediaConvert.html#deleteJobTemplate-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/MediaConvert.html#listJobTemplates-property
https://nodejs.org


AWS SDK for JavaScript Developer Guide for SDK v2

• Create a shared configurations file with your user credentials. For more information about 
providing a shared credentials file, see Loading Credentials in Node.js from the Shared 
Credentials File.

• Create an IAM role that gives MediaConvert access to your input files and the Amazon S3 buckets 
where your output files are stored. For details, see Set Up IAM Permissions in the AWS Elemental 
MediaConvert User Guide.

Creating a Job Template

Create a Node.js module with the file name emc_create_jobtemplate.js. Be sure to configure 
the SDK as previously shown.

Specify the parameters JSON for template creation. You can use most of the JSON parameters 
from a previous successful job to specify the Settings values in the template. This example uses 
the job settings from Creating and Managing Transcoding Jobs in MediaConvert.

Call the createJobTemplate method by creating a promise for invoking an AWS.MediaConvert
service object, passing the parameters. Then handle the response in the promise callback.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the Region
AWS.config.update({ region: "us-west-2" });
// Set the custom endpoint for your account
AWS.config.mediaconvert = { endpoint: "ACCOUNT_ENDPOINT" };

var params = { 
  Category: "YouTube Jobs", 
  Description: "Final production transcode", 
  Name: "DemoTemplate", 
  Queue: "JOB_QUEUE_ARN", 
  Settings: { 
    OutputGroups: [ 
      { 
        Name: "File Group", 
        OutputGroupSettings: { 
          Type: "FILE_GROUP_SETTINGS", 
          FileGroupSettings: { 
            Destination: "s3://BUCKET_NAME/", 
          }, 
        }, 

Using Job Templates 178

https://docs.aws.amazon.com/mediaconvert/latest/ug/iam-role.html


AWS SDK for JavaScript Developer Guide for SDK v2

        Outputs: [ 
          { 
            VideoDescription: { 
              ScalingBehavior: "DEFAULT", 
              TimecodeInsertion: "DISABLED", 
              AntiAlias: "ENABLED", 
              Sharpness: 50, 
              CodecSettings: { 
                Codec: "H_264", 
                H264Settings: { 
                  InterlaceMode: "PROGRESSIVE", 
                  NumberReferenceFrames: 3, 
                  Syntax: "DEFAULT", 
                  Softness: 0, 
                  GopClosedCadence: 1, 
                  GopSize: 90, 
                  Slices: 1, 
                  GopBReference: "DISABLED", 
                  SlowPal: "DISABLED", 
                  SpatialAdaptiveQuantization: "ENABLED", 
                  TemporalAdaptiveQuantization: "ENABLED", 
                  FlickerAdaptiveQuantization: "DISABLED", 
                  EntropyEncoding: "CABAC", 
                  Bitrate: 5000000, 
                  FramerateControl: "SPECIFIED", 
                  RateControlMode: "CBR", 
                  CodecProfile: "MAIN", 
                  Telecine: "NONE", 
                  MinIInterval: 0, 
                  AdaptiveQuantization: "HIGH", 
                  CodecLevel: "AUTO", 
                  FieldEncoding: "PAFF", 
                  SceneChangeDetect: "ENABLED", 
                  QualityTuningLevel: "SINGLE_PASS", 
                  FramerateConversionAlgorithm: "DUPLICATE_DROP", 
                  UnregisteredSeiTimecode: "DISABLED", 
                  GopSizeUnits: "FRAMES", 
                  ParControl: "SPECIFIED", 
                  NumberBFramesBetweenReferenceFrames: 2, 
                  RepeatPps: "DISABLED", 
                  FramerateNumerator: 30, 
                  FramerateDenominator: 1, 
                  ParNumerator: 1, 
                  ParDenominator: 1, 

Using Job Templates 179



AWS SDK for JavaScript Developer Guide for SDK v2

                }, 
              }, 
              AfdSignaling: "NONE", 
              DropFrameTimecode: "ENABLED", 
              RespondToAfd: "NONE", 
              ColorMetadata: "INSERT", 
            }, 
            AudioDescriptions: [ 
              { 
                AudioTypeControl: "FOLLOW_INPUT", 
                CodecSettings: { 
                  Codec: "AAC", 
                  AacSettings: { 
                    AudioDescriptionBroadcasterMix: "NORMAL", 
                    RateControlMode: "CBR", 
                    CodecProfile: "LC", 
                    CodingMode: "CODING_MODE_2_0", 
                    RawFormat: "NONE", 
                    SampleRate: 48000, 
                    Specification: "MPEG4", 
                    Bitrate: 64000, 
                  }, 
                }, 
                LanguageCodeControl: "FOLLOW_INPUT", 
                AudioSourceName: "Audio Selector 1", 
              }, 
            ], 
            ContainerSettings: { 
              Container: "MP4", 
              Mp4Settings: { 
                CslgAtom: "INCLUDE", 
                FreeSpaceBox: "EXCLUDE", 
                MoovPlacement: "PROGRESSIVE_DOWNLOAD", 
              }, 
            }, 
            NameModifier: "_1", 
          }, 
        ], 
      }, 
    ], 
    AdAvailOffset: 0, 
    Inputs: [ 
      { 
        AudioSelectors: { 

Using Job Templates 180



AWS SDK for JavaScript Developer Guide for SDK v2

          "Audio Selector 1": { 
            Offset: 0, 
            DefaultSelection: "NOT_DEFAULT", 
            ProgramSelection: 1, 
            SelectorType: "TRACK", 
            Tracks: [1], 
          }, 
        }, 
        VideoSelector: { 
          ColorSpace: "FOLLOW", 
        }, 
        FilterEnable: "AUTO", 
        PsiControl: "USE_PSI", 
        FilterStrength: 0, 
        DeblockFilter: "DISABLED", 
        DenoiseFilter: "DISABLED", 
        TimecodeSource: "EMBEDDED", 
      }, 
    ], 
    TimecodeConfig: { 
      Source: "EMBEDDED", 
    }, 
  },
};

// Create a promise on a MediaConvert object
var templatePromise = new AWS.MediaConvert({ apiVersion: "2017-08-29" }) 
  .createJobTemplate(params) 
  .promise();

// Handle promise's fulfilled/rejected status
templatePromise.then( 
  function (data) { 
    console.log("Success!", data); 
  }, 
  function (err) { 
    console.log("Error", err); 
  }
);

To run the example, type the following at the command line.

node emc_create_jobtemplate.js

Using Job Templates 181



AWS SDK for JavaScript Developer Guide for SDK v2

This sample code can be found here on GitHub.

Creating a Transcoding Job from a Job Template

Create a Node.js module with the file name emc_template_createjob.js. Be sure to configure 
the SDK as previously shown.

Create the job creation parameters JSON, including the name of the job template to use, and the
Settings to use that are specific to the job you're creating. Then call the createJobs method 
by creating a promise for invoking an AWS.MediaConvert service object, passing the parameters. 
Handle the response in the promise callback.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the Region
AWS.config.update({ region: "us-west-2" });
// Set the custom endpoint for your account
AWS.config.mediaconvert = { endpoint: "ACCOUNT_ENDPOINT" };

var params = { 
  Queue: "QUEUE_ARN", 
  JobTemplate: "TEMPLATE_NAME", 
  Role: "ROLE_ARN", 
  Settings: { 
    Inputs: [ 
      { 
        AudioSelectors: { 
          "Audio Selector 1": { 
            Offset: 0, 
            DefaultSelection: "NOT_DEFAULT", 
            ProgramSelection: 1, 
            SelectorType: "TRACK", 
            Tracks: [1], 
          }, 
        }, 
        VideoSelector: { 
          ColorSpace: "FOLLOW", 
        }, 
        FilterEnable: "AUTO", 
        PsiControl: "USE_PSI", 
        FilterStrength: 0, 
        DeblockFilter: "DISABLED", 
        DenoiseFilter: "DISABLED", 

Using Job Templates 182

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/mediaconvert/emc_create_jobtemplate.js


AWS SDK for JavaScript Developer Guide for SDK v2

        TimecodeSource: "EMBEDDED", 
        FileInput: "s3://BUCKET_NAME/FILE_NAME", 
      }, 
    ], 
  },
};

// Create a promise on a MediaConvert object
var templateJobPromise = new AWS.MediaConvert({ apiVersion: "2017-08-29" }) 
  .createJob(params) 
  .promise();

// Handle promise's fulfilled/rejected status
templateJobPromise.then( 
  function (data) { 
    console.log("Success! ", data); 
  }, 
  function (err) { 
    console.log("Error", err); 
  }
);

To run the example, type the following at the command line.

node emc_template_createjob.js

This sample code can be found here on GitHub.

Listing Your Job Templates

Create a Node.js module with the file name emc_listtemplates.js. Be sure to configure the 
SDK as previously shown.

Create an object to pass the request parameters for the listTemplates method of the
AWS.MediaConvert client class. Include values to determine what templates to list (NAME,
CREATION DATE, SYSTEM), how many to list, and their sort order. To call the listTemplates
method, create a promise for invoking an MediaConvert service object, passing the parameters. 
Then handle the response in the promise callback.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the Region

Using Job Templates 183

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/mediaconvert/emc_template_createjob.js


AWS SDK for JavaScript Developer Guide for SDK v2

AWS.config.update({ region: "us-west-2" });
// Set the customer endpoint
AWS.config.mediaconvert = { endpoint: "ACCOUNT_ENDPOINT" };

var params = { 
  ListBy: "NAME", 
  MaxResults: 10, 
  Order: "ASCENDING",
};

// Create a promise on a MediaConvert object
var listTemplatesPromise = new AWS.MediaConvert({ apiVersion: "2017-08-29" }) 
  .listJobTemplates(params) 
  .promise();

// Handle promise's fulfilled/rejected status
listTemplatesPromise.then( 
  function (data) { 
    console.log("Success ", data); 
  }, 
  function (err) { 
    console.log("Error", err); 
  }
);

To run the example, type the following at the command line.

node emc_listtemplates.js

This sample code can be found here on GitHub.

Deleting a Job Template

Create a Node.js module with the file name emc_deletetemplate.js. Be sure to configure the 
SDK as previously shown.

Create an object to pass the name of the job template you want to delete as parameters 
for the deleteJobTemplate method of the AWS.MediaConvert client class. To call the
deleteJobTemplate method, create a promise for invoking an MediaConvert service object, 
passing the parameters. Handle the response in the promise callback.

// Load the AWS SDK for Node.js

Using Job Templates 184

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/mediaconvert/emc_template_createjob.js


AWS SDK for JavaScript Developer Guide for SDK v2

var AWS = require("aws-sdk");
// Set the Region
AWS.config.update({ region: "us-west-2" });
// Set the customer endpoint
AWS.config.mediaconvert = { endpoint: "ACCOUNT_ENDPOINT" };

var params = { 
  Name: "TEMPLATE_NAME",
};

// Create a promise on a MediaConvert object
var deleteTemplatePromise = new AWS.MediaConvert({ apiVersion: "2017-08-29" }) 
  .deleteJobTemplate(params) 
  .promise();

// Handle promise's fulfilled/rejected status
deleteTemplatePromise.then( 
  function (data) { 
    console.log("Success ", data); 
  }, 
  function (err) { 
    console.log("Error", err); 
  }
);

To run the example, type the following at the command line.

node emc_deletetemplate.js

This sample code can be found here on GitHub.

Amazon S3 Glacier Examples

Amazon S3 Glacier is a secure cloud storage service for data archiving and long-term backup. 
The service is optimized for infrequently accessed data where a retrieval time of several hours is 
suitable.

Amazon S3 Glacier Examples 185

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/mediaconvert/emc_deletetemplate.js


AWS SDK for JavaScript Developer Guide for SDK v2

The JavaScript API for Amazon S3 Glacier is exposed through the AWS.Glacier client class. For 
more information about using the S3 Glacier client class, see Class: AWS.Glacier in the API 
reference.

Topics

• Creating a S3 Glacier Vault

• Uploading an Archive to S3 Glacier

• Doing a Multipart Upload to S3 Glacier

Creating a S3 Glacier Vault

This Node.js code example shows:

• How to create a vault using the createVault method of the Amazon S3 Glacier service object.

Prerequisite Tasks

To set up and run this example, you must first complete these tasks:

• Install Node.js. For more information about installing Node.js, see the Node.js website.

Creating a S3 Glacier Vault 186

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/Glacier.html
https://nodejs.org


AWS SDK for JavaScript Developer Guide for SDK v2

• Create a shared configurations file with your user credentials. For more information about 
providing a shared credentials file, see Loading Credentials in Node.js from the Shared 
Credentials File.

Create the Vault

// Load the SDK for JavaScript
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create a new service object
var glacier = new AWS.Glacier({ apiVersion: "2012-06-01" });
// Call Glacier to create the vault
glacier.createVault({ vaultName: "YOUR_VAULT_NAME" }, function (err) { 
  if (!err) { 
    console.log("Created vault!"); 
  }
});

Uploading an Archive to S3 Glacier

This Node.js code example shows:

• How to upload an archive to Amazon S3 Glacier using the uploadArchive method of the S3 
Glacier service object.

The following example uploads a single Buffer object as an entire archive using the
uploadArchive method of the S3 Glacier service object.

The example assumes you've already created a vault named YOUR_VAULT_NAME. The SDK 
automatically computes the tree hash checksum for the data uploaded, though you can override it 
by passing your own checksum parameter:

Uploading an Archive to S3 Glacier 187



AWS SDK for JavaScript Developer Guide for SDK v2

Prerequisite Tasks

To set up and run this example, you must first complete these tasks:

• Install Node.js. For more information about installing Node.js, see the Node.js website.

• Create a shared configurations file with your user credentials. For more information about 
providing a shared credentials file, see Loading Credentials in Node.js from the Shared 
Credentials File.

Upload the Archive

// Load the SDK for JavaScript
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create a new service object and buffer
var glacier = new AWS.Glacier({ apiVersion: "2012-06-01" });
buffer = Buffer.alloc(2.5 * 1024 * 1024); // 2.5MB buffer

var params = { vaultName: "YOUR_VAULT_NAME", body: buffer };
// Call Glacier to upload the archive.
glacier.uploadArchive(params, function (err, data) { 
  if (err) { 
    console.log("Error uploading archive!", err); 
  } else { 
    console.log("Archive ID", data.archiveId); 
  }
});

Doing a Multipart Upload to S3 Glacier

The following example creates a multipart upload out of 1 megabyte chunks of a Buffer object 
using the initiateMultipartUpload method of the Amazon S3 Glacier service object.

The example assumes you have already created a vault named YOUR_VAULT_NAME. A complete 
SHA-256 tree hash is manually computed using the computeChecksums method.

// Create a new service object and some supporting variables
var glacier = new AWS.Glacier({ apiVersion: "2012-06-01" }), 
  vaultName = "YOUR_VAULT_NAME", 

Doing a Multipart Upload to S3 Glacier 188

https://nodejs.org


AWS SDK for JavaScript Developer Guide for SDK v2

  buffer = new Buffer(2.5 * 1024 * 1024), // 2.5MB buffer 
  partSize = 1024 * 1024, // 1MB chunks, 
  numPartsLeft = Math.ceil(buffer.length / partSize), 
  startTime = new Date(), 
  params = { vaultName: vaultName, partSize: partSize.toString() };

// Compute the complete SHA-256 tree hash so we can pass it
// to completeMultipartUpload request at the end
var treeHash = glacier.computeChecksums(buffer).treeHash;

// Initiate the multipart upload
console.log("Initiating upload to", vaultName);
// Call Glacier to initiate the upload.
glacier.initiateMultipartUpload(params, function (mpErr, multipart) { 
  if (mpErr) { 
    console.log("Error!", mpErr.stack); 
    return; 
  } 
  console.log("Got upload ID", multipart.uploadId); 

  // Grab each partSize chunk and upload it as a part 
  for (var i = 0; i < buffer.length; i += partSize) { 
    var end = Math.min(i + partSize, buffer.length), 
      partParams = { 
        vaultName: vaultName, 
        uploadId: multipart.uploadId, 
        range: "bytes " + i + "-" + (end - 1) + "/*", 
        body: buffer.slice(i, end), 
      }; 

    // Send a single part 
    console.log("Uploading part", i, "=", partParams.range); 
    glacier.uploadMultipartPart(partParams, function (multiErr, mData) { 
      if (multiErr) return; 
      console.log("Completed part", this.request.params.range); 
      if (--numPartsLeft > 0) return; // complete only when all parts uploaded 

      var doneParams = { 
        vaultName: vaultName, 
        uploadId: multipart.uploadId, 
        archiveSize: buffer.length.toString(), 
        checksum: treeHash, // the computed tree hash 
      }; 

Doing a Multipart Upload to S3 Glacier 189



AWS SDK for JavaScript Developer Guide for SDK v2

      console.log("Completing upload..."); 
      glacier.completeMultipartUpload(doneParams, function (err, data) { 
        if (err) { 
          console.log("An error occurred while uploading the archive"); 
          console.log(err); 
        } else { 
          var delta = (new Date() - startTime) / 1000; 
          console.log("Completed upload in", delta, "seconds"); 
          console.log("Archive ID:", data.archiveId); 
          console.log("Checksum:  ", data.checksum); 
        } 
      }); 
    }); 
  }
});

AWS IAM Examples

AWS Identity and Access Management (IAM) is a web service that enables Amazon Web Services 
customers to manage users and user permissions in AWS. The service is targeted at organizations 
with multiple users or systems in the cloud that use AWS products. With IAM, you can centrally 
manage users, security credentials such as access keys, and permissions that control which AWS 
resources users can access.

The JavaScript API for IAM is exposed through the AWS.IAM client class. For more information 
about using the IAM client class, see Class: AWS.IAM in the API reference.

Topics

• Managing IAM Users

• Working with IAM Policies

AWS IAM Examples 190

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/IAM.html


AWS SDK for JavaScript Developer Guide for SDK v2

• Managing IAM Access Keys

• Working with IAM Server Certificates

• Managing IAM Account Aliases

Managing IAM Users

This Node.js code example shows:

• How to retrieve a list of IAM users.

• How to create and delete users.

• How to update a user name.

The Scenario

In this example, a series of Node.js modules are used to create and manage users in IAM. The 
Node.js modules use the SDK for JavaScript to create, delete, and update users using these 
methods of the AWS.IAM client class:

• createUser

• listUsers

• updateUser

• getUser

• deleteUser

For more information about IAM users, see IAM Users in the IAM User Guide.

Prerequisite Tasks

To set up and run this example, you must first complete these tasks:

• Install Node.js. For more information about installing Node.js, see the Node.js website.

Managing IAM Users 191

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/IAM.html#createUser-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/IAM.html#listUsers-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/IAM.html#updateUser-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/IAM.html#getUser-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/IAM.html#deleteUser-property
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://nodejs.org


AWS SDK for JavaScript Developer Guide for SDK v2

• Create a shared configurations file with your user credentials. For more information about 
providing a shared credentials file, see Loading Credentials in Node.js from the Shared 
Credentials File.

Creating a User

Create a Node.js module with the file name iam_createuser.js. Be sure to configure the SDK 
as previously shown. To access IAM, create an AWS.IAM service object. Create a JSON object 
containing the parameters needed, which consists of the user name you want to use for the new 
user as a command-line parameter.

Call the getUser method of the AWS.IAM service object to see if the user name already exists. 
If the user name does not currently exist, call the createUser method to create it. If the name 
already exists, write a message to that effect to the console.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

var params = { 
  UserName: process.argv[2],
};

iam.getUser(params, function (err, data) { 
  if (err && err.code === "NoSuchEntity") { 
    iam.createUser(params, function (err, data) { 
      if (err) { 
        console.log("Error", err); 
      } else { 
        console.log("Success", data); 
      } 
    }); 
  } else { 
    console.log( 
      "User " + process.argv[2] + " already exists", 
      data.User.UserId 
    ); 

Managing IAM Users 192



AWS SDK for JavaScript Developer Guide for SDK v2

  }
});

To run the example, type the following at the command line.

node iam_createuser.js USER_NAME

This sample code can be found here on GitHub.

Listing Users in Your Account

Create a Node.js module with the file name iam_listusers.js. Be sure to configure the SDK 
as previously shown. To access IAM, create an AWS.IAM service object. Create a JSON object 
containing the parameters needed to list your users, limiting the number returned by setting the
MaxItems parameter to 10. Call the listUsers method of the AWS.IAM service object. Write the 
first user's name and creation date to the console.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

var params = { 
  MaxItems: 10,
};

iam.listUsers(params, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    var users = data.Users || []; 
    users.forEach(function (user) { 
      console.log("User " + user.UserName + " created", user.CreateDate); 
    }); 
  }
});

To run the example, type the following at the command line.

Managing IAM Users 193

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/iam/iam_createuser.js


AWS SDK for JavaScript Developer Guide for SDK v2

node iam_listusers.js

This sample code can be found here on GitHub.

Updating a User's Name

Create a Node.js module with the file name iam_updateuser.js. Be sure to configure the SDK 
as previously shown. To access IAM, create an AWS.IAM service object. Create a JSON object 
containing the parameters needed to list your users, specifying both the current and new user 
names as command-line parameters. Call the updateUser method of the AWS.IAM service object.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

var params = { 
  UserName: process.argv[2], 
  NewUserName: process.argv[3],
};

iam.updateUser(params, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Success", data); 
  }
});

To run the example, type the following at the command line, specifying the user's current name 
followed by the new user name.

node iam_updateuser.js ORIGINAL_USERNAME NEW_USERNAME

This sample code can be found here on GitHub.

Managing IAM Users 194

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/iam/iam_listusers.js
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/iam/iam_updateuser.js


AWS SDK for JavaScript Developer Guide for SDK v2

Deleting a User

Create a Node.js module with the file name iam_deleteuser.js. Be sure to configure the SDK 
as previously shown. To access IAM, create an AWS.IAM service object. Create a JSON object 
containing the parameters needed, which consists of the user name you want to delete as a 
command-line parameter.

Call the getUser method of the AWS.IAM service object to see if the user name already exists. If 
the user name does not currently exist, write a message to that effect to the console. If the user 
exists, call the deleteUser method to delete it.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

var params = { 
  UserName: process.argv[2],
};

iam.getUser(params, function (err, data) { 
  if (err && err.code === "NoSuchEntity") { 
    console.log("User " + process.argv[2] + " does not exist."); 
  } else { 
    iam.deleteUser(params, function (err, data) { 
      if (err) { 
        console.log("Error", err); 
      } else { 
        console.log("Success", data); 
      } 
    }); 
  }
});

To run the example, type the following at the command line.

node iam_deleteuser.js USER_NAME

This sample code can be found here on GitHub.

Managing IAM Users 195

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/iam/iam_deleteuser.js


AWS SDK for JavaScript Developer Guide for SDK v2

Working with IAM Policies

This Node.js code example shows:

• How to create and delete IAM policies.

• How to attach and detach IAM policies from roles.

The Scenario

You grant permissions to a user by creating a policy, which is a document that lists the actions that 
a user can perform and the resources those actions can affect. Any actions or resources that are not 
explicitly allowed are denied by default. Policies can be created and attached to users, groups of 
users, roles assumed by users, and resources.

In this example, a series of Node.js modules are used to manage policies in IAM. The Node.js 
modules use the SDK for JavaScript to create and delete policies as well as attaching and detaching 
role policies using these methods of the AWS.IAM client class:

• createPolicy

• getPolicy

• listAttachedRolePolicies

• attachRolePolicy

• detachRolePolicy

For more information about IAM users, see Overview of Access Management: Permissions and 
Policies in the IAM User Guide.

Prerequisite Tasks

To set up and run this example, you must first complete these tasks:

• Install Node.js. For more information about installing Node.js, see the Node.js website.

Working with IAM Policies 196

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/IAM.html#createPolicy-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/IAM.html#getPolicy-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/IAM.html#listAttachedRolePolicies-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/IAM.html#attachRolePolicy-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/IAM.html#detachRolePolicy-property
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_access-management.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_access-management.html
https://nodejs.org


AWS SDK for JavaScript Developer Guide for SDK v2

• Create a shared configurations file with your user credentials. For more information about 
providing a shared credentials file, see Loading Credentials in Node.js from the Shared 
Credentials File.

• Create an IAM role to which you can attach policies. For more information about creating roles, 
see Creating IAM Roles in the IAM User Guide.

Creating an IAM Policy

Create a Node.js module with the file name iam_createpolicy.js. Be sure to configure the SDK 
as previously shown. To access IAM, create an AWS.IAM service object. Create two JSON objects, 
one containing the policy document you want to create and the other containing the parameters 
needed to create the policy, which includes the policy JSON and the name you want to give the 
policy. Be sure to stringify the policy JSON object in the parameters. Call the createPolicy
method of the AWS.IAM service object.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

var myManagedPolicy = { 
  Version: "2012-10-17", 
  Statement: [ 
    { 
      Effect: "Allow", 
      Action: "logs:CreateLogGroup", 
      Resource: "RESOURCE_ARN", 
    }, 
    { 
      Effect: "Allow", 
      Action: [ 
        "dynamodb:DeleteItem", 
        "dynamodb:GetItem", 
        "dynamodb:PutItem", 
        "dynamodb:Scan", 
        "dynamodb:UpdateItem", 
      ], 
      Resource: "RESOURCE_ARN", 

Working with IAM Policies 197

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create.html


AWS SDK for JavaScript Developer Guide for SDK v2

    }, 
  ],
};

var params = { 
  PolicyDocument: JSON.stringify(myManagedPolicy), 
  PolicyName: "myDynamoDBPolicy",
};

iam.createPolicy(params, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Success", data); 
  }
});

To run the example, type the following at the command line.

node iam_createpolicy.js

This sample code can be found here on GitHub.

Getting an IAM Policy

Create a Node.js module with the file name iam_getpolicy.js. Be sure to configure the SDK 
as previously shown. To access IAM, create an AWS.IAM service object. Create a JSON object 
containing the parameters needed retrieve a policy, which is the ARN of the policy you want to get. 
Call the getPolicy method of the AWS.IAM service object. Write the policy description to the 
console.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

var params = { 
  PolicyArn: "arn:aws:iam::aws:policy/AWSLambdaExecute",

Working with IAM Policies 198

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/iam/iam_createpolicy.js


AWS SDK for JavaScript Developer Guide for SDK v2

};

iam.getPolicy(params, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Success", data.Policy.Description); 
  }
});

To run the example, type the following at the command line.

node iam_getpolicy.js

This sample code can be found here on GitHub.

Attaching a Managed Role Policy

Create a Node.js module with the file name iam_attachrolepolicy.js. Be sure to configure the 
SDK as previously shown. To access IAM, create an AWS.IAM service object. Create a JSON object 
containing the parameters needed to get a list of managed IAM policies attached to a role, which 
consists of the name of the role. Provide the role name as a command-line parameter. Call the
listAttachedRolePolicies method of the AWS.IAM service object, which returns an array of 
managed policies to the callback function.

Check the array members to see if the policy you want to attach to the role is already attached. If 
the policy is not attached, call the attachRolePolicy method to attach it.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

var paramsRoleList = { 
  RoleName: process.argv[2],
};

iam.listAttachedRolePolicies(paramsRoleList, function (err, data) { 

Working with IAM Policies 199

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/iam/iam_getpolicy.js


AWS SDK for JavaScript Developer Guide for SDK v2

  if (err) { 
    console.log("Error", err); 
  } else { 
    var myRolePolicies = data.AttachedPolicies; 
    myRolePolicies.forEach(function (val, index, array) { 
      if (myRolePolicies[index].PolicyName === "AmazonDynamoDBFullAccess") { 
        console.log( 
          "AmazonDynamoDBFullAccess is already attached to this role." 
        ); 
        process.exit(); 
      } 
    }); 
    var params = { 
      PolicyArn: "arn:aws:iam::aws:policy/AmazonDynamoDBFullAccess", 
      RoleName: process.argv[2], 
    }; 
    iam.attachRolePolicy(params, function (err, data) { 
      if (err) { 
        console.log("Unable to attach policy to role", err); 
      } else { 
        console.log("Role attached successfully"); 
      } 
    }); 
  }
});

To run the example, type the following at the command line.

node iam_attachrolepolicy.js IAM_ROLE_NAME

Detaching a Managed Role Policy

Create a Node.js module with the file name iam_detachrolepolicy.js. Be sure to configure the 
SDK as previously shown. To access IAM, create an AWS.IAM service object. Create a JSON object 
containing the parameters needed to get a list of managed IAM policies attached to a role, which 
consists of the name of the role. Provide the role name as a command-line parameter. Call the
listAttachedRolePolicies method of the AWS.IAM service object, which returns an array of 
managed policies in the callback function.

Check the array members to see if the policy you want to detach from the role is attached. If the 
policy is attached, call the detachRolePolicy method to detach it.

Working with IAM Policies 200



AWS SDK for JavaScript Developer Guide for SDK v2

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

var paramsRoleList = { 
  RoleName: process.argv[2],
};

iam.listAttachedRolePolicies(paramsRoleList, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    var myRolePolicies = data.AttachedPolicies; 
    myRolePolicies.forEach(function (val, index, array) { 
      if (myRolePolicies[index].PolicyName === "AmazonDynamoDBFullAccess") { 
        var params = { 
          PolicyArn: "arn:aws:iam::aws:policy/AmazonDynamoDBFullAccess", 
          RoleName: process.argv[2], 
        }; 
        iam.detachRolePolicy(params, function (err, data) { 
          if (err) { 
            console.log("Unable to detach policy from role", err); 
          } else { 
            console.log("Policy detached from role successfully"); 
            process.exit(); 
          } 
        }); 
      } 
    }); 
  }
});

To run the example, type the following at the command line.

node iam_detachrolepolicy.js IAM_ROLE_NAME

Working with IAM Policies 201



AWS SDK for JavaScript Developer Guide for SDK v2

Managing IAM Access Keys

This Node.js code example shows:

• How to manage the access keys of your users.

The Scenario

Users need their own access keys to make programmatic calls to AWS from the SDK for JavaScript. 
To fill this need, you can create, modify, view, or rotate access keys (access key IDs and secret access 
keys) for IAM users. By default, when you create an access key, its status is Active, which means 
the user can use the access key for API calls.

In this example, a series of Node.js modules are used manage access keys in IAM. The Node.js 
modules use the SDK for JavaScript to manage IAM access keys using these methods of the
AWS.IAM client class:

• createAccessKey

• listAccessKeys

• getAccessKeyLastUsed

• updateAccessKey

• deleteAccessKey

For more information about IAM access keys, see Access Keys in the IAM User Guide.

Prerequisite Tasks

To set up and run this example, you must first complete these tasks:

• Install Node.js. For more information about installing Node.js, see the Node.js website.

• Create a shared configurations file with your user credentials. For more information about 
providing a shared credentials file, see Loading Credentials in Node.js from the Shared 
Credentials File.

Managing IAM Access Keys 202

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/IAM.html#createAccessKey-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/IAM.html#listAccessKeys-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/IAM.html#getAccessKeyLastUsed-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/IAM.html#updateAccessKey-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/IAM.html#deleteAccessKey-property
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://nodejs.org


AWS SDK for JavaScript Developer Guide for SDK v2

Creating Access Keys for a User

Create a Node.js module with the file name iam_createaccesskeys.js. Be sure to configure the 
SDK as previously shown. To access IAM, create an AWS.IAM service object. Create a JSON object 
containing the parameters needed to create new access keys, which includes IAM user's name. Call 
the createAccessKey method of the AWS.IAM service object.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

iam.createAccessKey({ UserName: "IAM_USER_NAME" }, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Success", data.AccessKey); 
  }
});

To run the example, type the following at the command line. Be sure to pipe the returned data to a 
text file in order not to lose the secret key, which can only be provided once.

node iam_createaccesskeys.js > newuserkeys.txt

This sample code can be found here on GitHub.

Listing a User's Access Keys

Create a Node.js module with the file name iam_listaccesskeys.js. Be sure to configure 
the SDK as previously shown. To access IAM, create an AWS.IAM service object. Create a JSON 
object containing the parameters needed to retrieve the user's access keys, which includes IAM 
user's name and optionally the maximum number of access key pairs you want listed. Call the
listAccessKeys method of the AWS.IAM service object.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");

Managing IAM Access Keys 203

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/iam/iam_createaccesskeys.js


AWS SDK for JavaScript Developer Guide for SDK v2

// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

var params = { 
  MaxItems: 5, 
  UserName: "IAM_USER_NAME",
};

iam.listAccessKeys(params, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Success", data); 
  }
});

To run the example, type the following at the command line.

node iam_listaccesskeys.js

This sample code can be found here on GitHub.

Getting the Last Use for Access Keys

Create a Node.js module with the file name iam_accesskeylastused.js. Be sure to configure 
the SDK as previously shown. To access IAM, create an AWS.IAM service object. Create a JSON 
object containing the parameters needed to create new access keys, which is the access key ID 
for which you want the last use information. Call the getAccessKeyLastUsed method of the
AWS.IAM service object.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

iam.getAccessKeyLastUsed( 

Managing IAM Access Keys 204

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/iam/iam_listaccesskeys.js


AWS SDK for JavaScript Developer Guide for SDK v2

  { AccessKeyId: "ACCESS_KEY_ID" }, 
  function (err, data) { 
    if (err) { 
      console.log("Error", err); 
    } else { 
      console.log("Success", data.AccessKeyLastUsed); 
    } 
  }
); 

             

To run the example, type the following at the command line.

node iam_accesskeylastused.js

This sample code can be found here on GitHub.

Updating Access Key Status

Create a Node.js module with the file name iam_updateaccesskey.js. Be sure to configure 
the SDK as previously shown. To access IAM, create an AWS.IAM service object. Create a JSON 
object containing the parameters needed to update the status of an access keys, which includes 
the access key ID and the updated status. The status can be Active or Inactive. Call the
updateAccessKey method of the AWS.IAM service object.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

var params = { 
  AccessKeyId: "ACCESS_KEY_ID", 
  Status: "Active", 
  UserName: "USER_NAME",
};

iam.updateAccessKey(params, function (err, data) { 
  if (err) { 

Managing IAM Access Keys 205

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/iam/iam_accesskeylastused.js


AWS SDK for JavaScript Developer Guide for SDK v2

    console.log("Error", err); 
  } else { 
    console.log("Success", data); 
  }
});

To run the example, type the following at the command line.

node iam_updateaccesskey.js

This sample code can be found here on GitHub.

Deleting Access Keys

Create a Node.js module with the file name iam_deleteaccesskey.js. Be sure to configure the 
SDK as previously shown. To access IAM, create an AWS.IAM service object. Create a JSON object 
containing the parameters needed to delete access keys, which includes the access key ID and the 
name of the user. Call the deleteAccessKey method of the AWS.IAM service object.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

var params = { 
  AccessKeyId: "ACCESS_KEY_ID", 
  UserName: "USER_NAME",
};

iam.deleteAccessKey(params, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Success", data); 
  }
});

To run the example, type the following at the command line.

Managing IAM Access Keys 206

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/iam/iam_updateaccesskey.js


AWS SDK for JavaScript Developer Guide for SDK v2

node iam_deleteaccesskey.js

This sample code can be found here on GitHub.

Working with IAM Server Certificates

This Node.js code example shows:

• How to carry out basic tasks in managing server certificates for HTTPS connections.

The Scenario

To enable HTTPS connections to your website or application on AWS, you need an SSL/TLS server 
certificate. To use a certificate that you obtained from an external provider with your website 
or application on AWS, you must upload the certificate to IAM or import it into AWS Certificate 
Manager.

In this example, a series of Node.js modules are used to handle server certificates in IAM. The 
Node.js modules use the SDK for JavaScript to manage server certificates using these methods of 
the AWS.IAM client class:

• listServerCertificates

• getServerCertificate

• updateServerCertificate

• deleteServerCertificate

For more information about server certificates, see Working with Server Certificates in the IAM User 
Guide.

Prerequisite Tasks

To set up and run this example, you must first complete these tasks:

• Install Node.js. For more information about installing Node.js, see the Node.js website.

Working with IAM Server Certificates 207

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/iam/iam_deleteaccesskey.js
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/IAM.html#listServerCertificates-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/IAM.html#getServerCertificate-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/IAM.html#updateServerCertificate-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/IAM.html#deleteServerCertificate-property
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_server-certs.html
https://nodejs.org


AWS SDK for JavaScript Developer Guide for SDK v2

• Create a shared configurations file with your user credentials. For more information about 
providing a shared credentials file, see Loading Credentials in Node.js from the Shared 
Credentials File.

Listing Your Server Certificates

Create a Node.js module with the file name iam_listservercerts.js. Be sure to configure 
the SDK as previously shown. To access IAM, create an AWS.IAM service object. Call the
listServerCertificates method of the AWS.IAM service object.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

iam.listServerCertificates({}, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Success", data); 
  }
});

To run the example, type the following at the command line.

node iam_listservercerts.js

This sample code can be found here on GitHub.

Getting a Server Certificate

Create a Node.js module with the file name iam_getservercert.js. Be sure to configure the 
SDK as previously shown. To access IAM, create an AWS.IAM service object. Create a JSON object 
containing the parameters needed get a certificate, which consists of the name of the server 
certificate you want. Call the getServerCertificates method of the AWS.IAM service object.

// Load the AWS SDK for Node.js

Working with IAM Server Certificates 208

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/iam/iam_listservercerts.js


AWS SDK for JavaScript Developer Guide for SDK v2

var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

iam.getServerCertificate( 
  { ServerCertificateName: "CERTIFICATE_NAME" }, 
  function (err, data) { 
    if (err) { 
      console.log("Error", err); 
    } else { 
      console.log("Success", data); 
    } 
  }
);

To run the example, type the following at the command line.

node iam_getservercert.js

This sample code can be found here on GitHub.

Updating a Server Certificate

Create a Node.js module with the file name iam_updateservercert.js. Be sure to configure 
the SDK as previously shown. To access IAM, create an AWS.IAM service object. Create a 
JSON object containing the parameters needed to update a certificate, which consists of the 
name of the existing server certificate as well as the name of the new certificate. Call the
updateServerCertificate method of the AWS.IAM service object.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

var params = { 
  ServerCertificateName: "CERTIFICATE_NAME", 

Working with IAM Server Certificates 209

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/iam/iam_getservercert.js


AWS SDK for JavaScript Developer Guide for SDK v2

  NewServerCertificateName: "NEW_CERTIFICATE_NAME",
};

iam.updateServerCertificate(params, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Success", data); 
  }
});

To run the example, type the following at the command line.

node iam_updateservercert.js

This sample code can be found here on GitHub.

Deleting a Server Certificate

Create a Node.js module with the file name iam_deleteservercert.js. Be sure to configure the 
SDK as previously shown. To access IAM, create an AWS.IAM service object. Create a JSON object 
containing the parameters needed to delete a server certificate, which consists of the name of the 
certificate you want to delete. Call the deleteServerCertificates method of the AWS.IAM
service object.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

iam.deleteServerCertificate( 
  { ServerCertificateName: "CERTIFICATE_NAME" }, 
  function (err, data) { 
    if (err) { 
      console.log("Error", err); 
    } else { 
      console.log("Success", data); 
    } 
  }

Working with IAM Server Certificates 210

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/iam/iam_updateservercert.js


AWS SDK for JavaScript Developer Guide for SDK v2

);

To run the example, type the following at the command line.

node iam_deleteservercert.js

This sample code can be found here on GitHub.

Managing IAM Account Aliases

This Node.js code example shows:

• How to manage aliases for your AWS account ID.

The Scenario

If you want the URL for your sign-in page to contain your company name or other friendly 
identifier instead of your AWS account ID, you can create an alias for your AWS account ID. If you 
create an AWS account alias, your sign-in page URL changes to incorporate the alias.

In this example, a series of Node.js modules are used to create and manage IAM account aliases. 
The Node.js modules use the SDK for JavaScript to manage aliases using these methods of the
AWS.IAM client class:

• createAccountAlias

• listAccountAliases

• deleteAccountAlias

For more information about IAM account aliases, see Your AWS Account ID and Its Alias in the IAM 
User Guide.

Prerequisite Tasks

To set up and run this example, you must first complete these tasks:

Managing IAM Account Aliases 211

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/iam/iam_deleteservercert.js
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/IAM.html#createAccountAlias-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/IAM.html#listAccountAliases-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/IAM.html#deleteAccountAlias-property
https://docs.aws.amazon.com/IAM/latest/UserGuide/console_account-alias.html


AWS SDK for JavaScript Developer Guide for SDK v2

• Install Node.js. For more information about installing Node.js, see the Node.js website.

• Create a shared configurations file with your user credentials. For more information about 
providing a shared credentials file, see Loading Credentials in Node.js from the Shared 
Credentials File.

Creating an Account Alias

Create a Node.js module with the file name iam_createaccountalias.js. Be sure to configure 
the SDK as previously shown. To access IAM, create an AWS.IAM service object. Create a JSON 
object containing the parameters needed to create an account alias, which includes the alias you 
want to create. Call the createAccountAlias method of the AWS.IAM service object.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

iam.createAccountAlias({ AccountAlias: process.argv[2] }, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Success", data); 
  }
});

To run the example, type the following at the command line.

node iam_createaccountalias.js ALIAS

This sample code can be found here on GitHub.

Listing Account Aliases

Create a Node.js module with the file name iam_listaccountaliases.js. Be sure to configure 
the SDK as previously shown. To access IAM, create an AWS.IAM service object. Create a JSON 
object containing the parameters needed to list account aliases, which includes the maximum 
number of items to return. Call the listAccountAliases method of the AWS.IAM service object.

Managing IAM Account Aliases 212

https://nodejs.org
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/iam/iam_createaccountalias.js


AWS SDK for JavaScript Developer Guide for SDK v2

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

iam.listAccountAliases({ MaxItems: 10 }, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Success", data); 
  }
});

To run the example, type the following at the command line.

node iam_listaccountaliases.js

This sample code can be found here on GitHub.

Deleting an Account Alias

Create a Node.js module with the file name iam_deleteaccountalias.js. Be sure to configure 
the SDK as previously shown. To access IAM, create an AWS.IAM service object. Create a JSON 
object containing the parameters needed to delete an account alias, which includes the alias you 
want deleted. Call the deleteAccountAlias method of the AWS.IAM service object.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

iam.deleteAccountAlias({ AccountAlias: process.argv[2] }, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Success", data); 

Managing IAM Account Aliases 213

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/iam/iam_listaccountaliases.js


AWS SDK for JavaScript Developer Guide for SDK v2

  }
});

To run the example, type the following at the command line.

node iam_deleteaccountalias.js ALIAS

This sample code can be found here on GitHub.

Amazon Kinesis Example

Amazon Kinesis is a platform for streaming data on AWS, offering powerful services to load and 
analyze streaming data, and also providing the ability for you to build custom streaming data 
applications for specialized needs.

The JavaScript API for Kinesis is exposed through the AWS.Kinesis client class. For more 
information about using the Kinesis client class, see Class: AWS.Kinesis in the API reference.

Topics

• Capturing Web Page Scroll Progress with Amazon Kinesis

Capturing Web Page Scroll Progress with Amazon Kinesis

This browser script example shows:

Amazon Kinesis Example 214

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/iam/iam_deleteaccountalias.js
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/Kinesis.html


AWS SDK for JavaScript Developer Guide for SDK v2

• How to capture scroll progress in a web page with Amazon Kinesis as an example of streaming 
page usage metrics for later analysis.

The Scenario

In this example, a simple HTML page simulates the content of a blog page. As the reader scrolls 
the simulated blog post, the browser script uses the SDK for JavaScript to record the scroll distance 
down the page and send that data to Kinesis using the putRecords method of the Kinesis client 
class. The streaming data captured by Amazon Kinesis Data Streams can then be processed by 
Amazon EC2 instances and stored in any of several data stores including Amazon DynamoDB and 
Amazon Redshift.

Prerequisite Tasks

To set up and run this example, you must first complete these tasks:

• Create an Kinesis stream. You need to include the stream's resource ARN in the browser script. 
For more information about creating Amazon Kinesis Data Streams, see Managing Kinesis 
Streams in the Amazon Kinesis Data Streams Developer Guide.

• Create an Amazon Cognito identity pool with access enabled for unauthenticated identities. 
You need to include the identity pool ID in the code to obtain credentials for the browser script. 
For more information about Amazon Cognito identity pools, see Identity Pools in the Amazon 
Cognito Developer Guide.

• Create an IAM role whose policy grants permission to submit data to an Kinesis stream. For more 
information about creating an IAM role, see Creating a Role to Delegate Permissions to an AWS 
Service in the IAM User Guide.

Use the following role policy when creating the IAM role.

{ 
   "Version": "2012-10-17", 
   "Statement": [ 
      { 
         "Effect": "Allow", 
         "Action": [ 
            "mobileanalytics:PutEvents", 
            "cognito-sync:*" 
         ], 

Capturing Web Page Scroll Progress with Amazon Kinesis 215

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/Kinesis.html#putRecords-property
https://docs.aws.amazon.com/streams/latest/dev/working-with-streams.html
https://docs.aws.amazon.com/streams/latest/dev/working-with-streams.html
https://docs.aws.amazon.com/cognito/latest/developerguide/identity-pools.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html


AWS SDK for JavaScript Developer Guide for SDK v2

         "Resource": [ 
            "*" 
         ] 
      }, 
      { 
         "Effect": "Allow", 
         "Action": [ 
            "kinesis:Put*" 
         ], 
         "Resource": [ 
            "STREAM_RESOURCE_ARN" 
         ] 
      } 
   ]
}

The Blog Page

The HTML for the blog page consists mainly of a series of paragraphs contained within a <div>
element. The scrollable height of this <div> is used to help calculate how far a reader has scrolled 
through the content as they read. The HTML also contains a pair of <script> elements. One of 
these elements adds the SDK for JavaScript to the page and the other adds the browser script that 
captures scroll progress on the page and reports it to Kinesis.

<!DOCTYPE html>
<html> 
    <head> 
        <title>AWS SDK for JavaScript - Amazon Kinesis Application</title> 
    </head> 
    <body> 
        <div id="BlogContent" style="width: 60%; height: 800px; overflow: auto;margin: 
 auto; text-align: center;"> 
            <div> 
                <p> 
                Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vestibulum 
 vitae nulla eget nisl bibendum feugiat. Fusce rhoncus felis at ultricies luctus. 
 Vivamus fermentum cursus sem at interdum. Proin vel lobortis nulla. Aenean rutrum 
 odio in tellus semper rhoncus. Nam eu felis ac augue dapibus laoreet vel in erat. 
 Vivamus vitae mollis turpis. Integer sagittis dictum odio. Duis nec sapien diam. 
 In imperdiet sem nec ante laoreet, vehicula facilisis sem placerat. Duis ut metus 
 egestas, ullamcorper neque et, accumsan quam. Class aptent taciti sociosqu ad litora 
 torquent per conubia nostra, per inceptos himenaeos. 
                </p> 

Capturing Web Page Scroll Progress with Amazon Kinesis 216



AWS SDK for JavaScript Developer Guide for SDK v2

                <!-- Additional paragraphs in the blog page appear here --> 
            </div> 
        </div> 
        <script src="https://sdk.amazonaws.com/js/aws-sdk-2.283.1.min.js"></script> 
        <script src="kinesis-example.js"></script> 
    </body>
</html>

Configuring the SDK

Obtain the credentials needed to configure the SDK by calling the
CognitoIdentityCredentials method, providing the Amazon Cognito identity pool ID. Upon 
success, create the Kinesis service object in the callback function.

The following code snippet shows this step. (See Capturing Web Page Scroll Progress Code for the 
full example.)

// Configure Credentials to use Cognito
AWS.config.credentials = new AWS.CognitoIdentityCredentials({ 
  IdentityPoolId: "IDENTITY_POOL_ID",
});

AWS.config.region = "REGION";
// We're going to partition Amazon Kinesis records based on an identity.
// We need to get credentials first, then attach our event listeners.
AWS.config.credentials.get(function (err) { 
  // attach event listener 
  if (err) { 
    alert("Error retrieving credentials."); 
    console.error(err); 
    return; 
  } 
  // create Amazon Kinesis service object 
  var kinesis = new AWS.Kinesis({ 
    apiVersion: "2013-12-02", 
  });

Creating Scroll Records

Scroll progress is calculated using the scrollHeight and scrollTop properties of the <div>
containing the content of the blog post. Each scroll record is created in an event listener function 
for the scroll event and then added to an array of records for periodic submission to Kinesis.

Capturing Web Page Scroll Progress with Amazon Kinesis 217



AWS SDK for JavaScript Developer Guide for SDK v2

The following code snippet shows this step. (See Capturing Web Page Scroll Progress Code for the 
full example.)

  // Get the ID of the Web page element. 
  var blogContent = document.getElementById("BlogContent"); 

  // Get Scrollable height 
  var scrollableHeight = blogContent.clientHeight; 

  var recordData = []; 
  var TID = null; 
  blogContent.addEventListener("scroll", function (event) { 
    clearTimeout(TID); 
    // Prevent creating a record while a user is actively scrolling 
    TID = setTimeout(function () { 
      // calculate percentage 
      var scrollableElement = event.target; 
      var scrollHeight = scrollableElement.scrollHeight; 
      var scrollTop = scrollableElement.scrollTop; 

      var scrollTopPercentage = Math.round((scrollTop / scrollHeight) * 100); 
      var scrollBottomPercentage = Math.round( 
        ((scrollTop + scrollableHeight) / scrollHeight) * 100 
      ); 

      // Create the Amazon Kinesis record 
      var record = { 
        Data: JSON.stringify({ 
          blog: window.location.href, 
          scrollTopPercentage: scrollTopPercentage, 
          scrollBottomPercentage: scrollBottomPercentage, 
          time: new Date(), 
        }), 
        PartitionKey: "partition-" + AWS.config.credentials.identityId, 
      }; 
      recordData.push(record); 
    }, 100); 
  });

Submitting Records to Kinesis

Once each second, if there are records in the array, those pending records are sent to Kinesis.

Capturing Web Page Scroll Progress with Amazon Kinesis 218



AWS SDK for JavaScript Developer Guide for SDK v2

The following code snippet shows this step. (See Capturing Web Page Scroll Progress Code for the 
full example.)

  // upload data to Amazon Kinesis every second if data exists 
  setInterval(function () { 
    if (!recordData.length) { 
      return; 
    } 
    // upload data to Amazon Kinesis 
    kinesis.putRecords( 
      { 
        Records: recordData, 
        StreamName: "NAME_OF_STREAM", 
      }, 
      function (err, data) { 
        if (err) { 
          console.error(err); 
        } 
      } 
    ); 
    // clear record data 
    recordData = []; 
  }, 1000);
});

Capturing Web Page Scroll Progress Code

Here is the browser script code for the Kinesis capturing web page scroll progress example.

// Configure Credentials to use Cognito
AWS.config.credentials = new AWS.CognitoIdentityCredentials({ 
  IdentityPoolId: "IDENTITY_POOL_ID",
});

AWS.config.region = "REGION";
// We're going to partition Amazon Kinesis records based on an identity.
// We need to get credentials first, then attach our event listeners.
AWS.config.credentials.get(function (err) { 
  // attach event listener 
  if (err) { 
    alert("Error retrieving credentials."); 
    console.error(err); 
    return; 

Capturing Web Page Scroll Progress with Amazon Kinesis 219



AWS SDK for JavaScript Developer Guide for SDK v2

  } 
  // create Amazon Kinesis service object 
  var kinesis = new AWS.Kinesis({ 
    apiVersion: "2013-12-02", 
  }); 

  // Get the ID of the Web page element. 
  var blogContent = document.getElementById("BlogContent"); 

  // Get Scrollable height 
  var scrollableHeight = blogContent.clientHeight; 

  var recordData = []; 
  var TID = null; 
  blogContent.addEventListener("scroll", function (event) { 
    clearTimeout(TID); 
    // Prevent creating a record while a user is actively scrolling 
    TID = setTimeout(function () { 
      // calculate percentage 
      var scrollableElement = event.target; 
      var scrollHeight = scrollableElement.scrollHeight; 
      var scrollTop = scrollableElement.scrollTop; 

      var scrollTopPercentage = Math.round((scrollTop / scrollHeight) * 100); 
      var scrollBottomPercentage = Math.round( 
        ((scrollTop + scrollableHeight) / scrollHeight) * 100 
      ); 

      // Create the Amazon Kinesis record 
      var record = { 
        Data: JSON.stringify({ 
          blog: window.location.href, 
          scrollTopPercentage: scrollTopPercentage, 
          scrollBottomPercentage: scrollBottomPercentage, 
          time: new Date(), 
        }), 
        PartitionKey: "partition-" + AWS.config.credentials.identityId, 
      }; 
      recordData.push(record); 
    }, 100); 
  }); 

  // upload data to Amazon Kinesis every second if data exists 
  setInterval(function () { 

Capturing Web Page Scroll Progress with Amazon Kinesis 220



AWS SDK for JavaScript Developer Guide for SDK v2

    if (!recordData.length) { 
      return; 
    } 
    // upload data to Amazon Kinesis 
    kinesis.putRecords( 
      { 
        Records: recordData, 
        StreamName: "NAME_OF_STREAM", 
      }, 
      function (err, data) { 
        if (err) { 
          console.error(err); 
        } 
      } 
    ); 
    // clear record data 
    recordData = []; 
  }, 1000);
});

Amazon S3 Examples

Amazon Simple Storage Service (Amazon S3) is a web service that provides highly scalable cloud 
storage. Amazon S3 provides easy to use object storage, with a simple web service interface to 
store and retrieve any amount of data from anywhere on the web.

The JavaScript API for Amazon S3 is exposed through the AWS.S3 client class. For more 
information about using the Amazon S3 client class, see Class: AWS.S3 in the API reference.

Topics

• Amazon S3 Browser Examples

Amazon S3 Examples 221

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html


AWS SDK for JavaScript Developer Guide for SDK v2

• Amazon S3 Node.js Examples

Amazon S3 Browser Examples

The following topics show two examples of how the AWS SDK for JavaScript can be used in the 
browser to interact with Amazon S3 buckets.

• The first shows a simple scenario in which the existing photos in an Amazon S3 bucket can be 
viewed by any (unauthenticated) user.

• The second shows a more complex scenario in which users are allowed to perform operations on 
photos in the bucket such as upload, delete, etc.

Topics

• Viewing Photos in an Amazon S3 Bucket from a Browser

• Uploading Photos to Amazon S3 from a Browser

Viewing Photos in an Amazon S3 Bucket from a Browser

This browser script code example shows:

• How to create a photo album in an Amazon Simple Storage Service (Amazon S3) bucket and 
allow unauthenticated users to view the photos.

The Scenario

In this example, a simple HTML page provides a browser-based application for viewing the photos 
in a photo album. The photo album is in an Amazon S3 bucket into which photos are uploaded.

Amazon S3 Browser Examples 222



AWS SDK for JavaScript Developer Guide for SDK v2

The browser script uses the SDK for JavaScript to interact with an Amazon S3 bucket. The script 
uses the listObjects method of the Amazon S3 client class to enable you to view the photo 
albums.

Prerequisite Tasks

To set up and run this example, first complete these tasks.

Note

In this example, you must use the same AWS Region for both the Amazon S3 bucket and 
the Amazon Cognito identity pool.

Create the Bucket

In the Amazon S3 console, create an Amazon S3 bucket where you can store albums and photos. 
For more information about using the console to create an S3 bucket, see Creating a Bucket in the
Amazon Simple Storage Service User Guide.

As you create the S3 bucket, be sure to do the following:

• Make note of the bucket name so you can use it in a subsequent prerequisite task, Configure Role 
Permissions.

• Choose an AWS Region to create the bucket in. This must be the same Region that you'll use to 
create an Amazon Cognito identity pool in a subsequent prerequisite task, Create an Identity 
Pool.

• In the Create Bucket wizard, on the Public access settings... page, in the Manage public access 
control lists (ACLs) group, clear these boxes: Block new public ACLs and uploading public 
objects and Remove public access granted through public ACLs.

Amazon S3 Browser Examples 223

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#listObjects-property
https://console.aws.amazon.com/s3/
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-bucket.html


AWS SDK for JavaScript Developer Guide for SDK v2

For information about how to check and configure bucket permissions, see Setting permissions 
for website access in the Amazon Simple Storage Service User Guide.

Create an Identity Pool

In the Amazon Cognito console, create an Amazon Cognito identity pool, as described in the 
section called “Step 1: Create an Amazon Cognito Identity Pool” of the Getting Started in a Browser 
Script topic.

As you create the identity pool:

• Make note of the identity pool name, as well as the role name for the unauthenticated identity.

• On the Sample Code page, select "JavaScript" from the Platform list. Then copy or write down 
the sample code.

Note

You must choose "JavaScript" from the Platform list for your code to work.

Configure Role Permissions

To allow viewing of albums and photos, you have to add permissions to an IAM role of the identity 
pool that you just created. Start by creating a policy as follows.

1. Open the IAM console.

2. In the navigation pane on the left, choose Policies, and then choose the Create policy button.

3. On the JSON tab, enter the following JSON definition, but replace BUCKET_NAME with the 
name of the bucket.

{ 
   "Version": "2012-10-17", 
   "Statement": [ 
      { 
         "Effect": "Allow", 
         "Action": [ 
            "s3:ListBucket" 
         ], 
         "Resource": [ 

Amazon S3 Browser Examples 224

https://docs.aws.amazon.com/AmazonS3/latest/dev/WebsiteAccessPermissionsReqd.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/WebsiteAccessPermissionsReqd.html
https://console.aws.amazon.com/cognito/
https://console.aws.amazon.com/iam/


AWS SDK for JavaScript Developer Guide for SDK v2

            "arn:aws:s3:::BUCKET_NAME" 
         ] 
      } 
   ]
}

4. Choose the Review policy button, name the policy and provide a description (if you want), and 
then choose the Create policy button.

Be sure to make note of the name so that you can find it and attach it to the IAM role later.

After the policy is created, navigate back to the IAM console. Find the IAM role for the
unauthenticated identity that Amazon Cognito created in the previous prerequisite task, Create an 
Identity Pool. You use the policy you just created to add permissions to this identity.

Although the workflow for this task is generally the same as the section called “Step 2: Add a 
Policy to the Created IAM Role” of the Getting Started in a Browser Script topic, there are a few 
differences to note:

• Use the new policy that you just created, not a policy for Amazon Polly.

• On the Attach Permissions page, to quickly find the new policy, open the Filter policies list and 
choose Customer managed.

For additional information about creating an IAM role, see Creating a Role to Delegate Permissions 
to an AWS Service in the IAM User Guide.

Configure CORS

Before the browser script can access the Amazon S3 bucket, you have to set up its CORS 
configuration as follows.

Important

In the new S3 console, the CORS configuration must be JSON.

JSON

[ 

Amazon S3 Browser Examples 225

https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html


AWS SDK for JavaScript Developer Guide for SDK v2

    { 
        "AllowedHeaders": [ 
            "*" 
        ], 
        "AllowedMethods": [ 
            "HEAD", 
            "GET" 
        ], 
        "AllowedOrigins": [ 
            "*" 
        ] 
    }
]

XML

<?xml version="1.0" encoding="UTF-8"?>
<CORSConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/"> 
    <CORSRule> 
        <AllowedOrigin>*</AllowedOrigin> 
        <AllowedMethod>GET</AllowedMethod> 
        <AllowedMethod>HEAD</AllowedMethod> 
        <AllowedHeader>*</AllowedHeader> 
    </CORSRule>
</CORSConfiguration>

Create Albums and Upload Photos

Because this example only allows users to view the photos that are already in the bucket, you need 
to create some albums in the bucket and upload photos to them.

Note

For this example, the file names of the photo files must start with a single underscore ("_"). 
This character is important later for filtering. In addition, be sure to respect the copyrights 
of the owners of the photos.

1. In the Amazon S3 console, open the bucket that you created earlier.

Amazon S3 Browser Examples 226

https://console.aws.amazon.com/s3/


AWS SDK for JavaScript Developer Guide for SDK v2

2. On the Overview tab, choose the Create folder button to create folders. For this example, name 
the folders "album1", "album2", and "album3".

3. For album1 and then album2, select the folder and then upload photos to it as follows:

a. Choose the Upload button.

b. Drag or choose the photo files you want to use, and then choose Next.

c. Under Manage public permissions, choose Grant public read access to this object(s).

d. Choose the Upload button (in the lower-left corner).

4. Leave album3 empty.

Defining the Webpage

The HTML for the photo-viewing application consists of a <div> element in which the browser 
script creates the viewing interface. The first <script> element adds the SDK to the browser 
script. The second <script> element adds the external JavaScript file that holds the browser 
script code.

For this example, the file is named PhotoViewer.js, and is located in the same folder as the 
HTML file. To find the current SDK_VERSION_NUMBER, see the API Reference for the SDK for 
JavaScript at AWS SDK for JavaScript API Reference Guide.

<!DOCTYPE html>
<html> 
  <head> 
    <!-- **DO THIS**: --> 
    <!--   Replace SDK_VERSION_NUMBER with the current SDK version number --> 
    <script src="https://sdk.amazonaws.com/js/aws-sdk-SDK_VERSION_NUMBER.js"></script> 
    <script src="./PhotoViewer.js"></script> 
    <script>listAlbums();</script> 
  </head> 
  <body> 
    <h1>Photo Album Viewer</h1> 
    <div id="viewer" /> 
  </body>
</html>

Amazon S3 Browser Examples 227

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/


AWS SDK for JavaScript Developer Guide for SDK v2

Configuring the SDK

Obtain the credentials you need to configure the SDK by calling the
CognitoIdentityCredentials method. You need to provide the Amazon Cognito identity pool 
ID. Then create an AWS.S3 service object.

// **DO THIS**:
//   Replace BUCKET_NAME with the bucket name.
//
var albumBucketName = "BUCKET_NAME";

// **DO THIS**:
//   Replace this block of code with the sample code located at:
//   Cognito -- Manage Identity Pools -- [identity_pool_name] -- Sample Code -- 
 JavaScript
//
// Initialize the Amazon Cognito credentials provider
AWS.config.region = "REGION"; // Region
AWS.config.credentials = new AWS.CognitoIdentityCredentials({ 
  IdentityPoolId: "IDENTITY_POOL_ID",
});

// Create a new service object
var s3 = new AWS.S3({ 
  apiVersion: "2006-03-01", 
  params: { Bucket: albumBucketName },
});

// A utility function to create HTML.
function getHtml(template) { 
  return template.join("\n");
}

The rest of the code in this example defines the following functions to gather and present 
information about the albums and photos in the bucket.

• listAlbums

• viewAlbum

Amazon S3 Browser Examples 228



AWS SDK for JavaScript Developer Guide for SDK v2

Listing Albums in the Bucket

To list all of the existing albums in the bucket, the application's listAlbums function calls the
listObjects method of the AWS.S3 service object. The function uses the CommonPrefixes
property so that the call returns only objects that are used as albums (that is, the folders).

The rest of the function takes the list of albums from the Amazon S3 bucket and generates the 
HTML needed to display the album list on the webpage.

// List the photo albums that exist in the bucket.
function listAlbums() { 
  s3.listObjects({ Delimiter: "/" }, function (err, data) { 
    if (err) { 
      return alert("There was an error listing your albums: " + err.message); 
    } else { 
      var albums = data.CommonPrefixes.map(function (commonPrefix) { 
        var prefix = commonPrefix.Prefix; 
        var albumName = decodeURIComponent(prefix.replace("/", "")); 
        return getHtml([ 
          "<li>", 
          '<button style="margin:5px;" onclick="viewAlbum(\'' + 
            albumName + 
            "')\">", 
          albumName, 
          "</button>", 
          "</li>", 
        ]); 
      }); 
      var message = albums.length 
        ? getHtml(["<p>Click on an album name to view it.</p>"]) 
        : "<p>You do not have any albums. Please Create album."; 
      var htmlTemplate = [ 
        "<h2>Albums</h2>", 
        message, 
        "<ul>", 
        getHtml(albums), 
        "</ul>", 
      ]; 
      document.getElementById("viewer").innerHTML = getHtml(htmlTemplate); 
    } 
  });
}

Amazon S3 Browser Examples 229



AWS SDK for JavaScript Developer Guide for SDK v2

Viewing an Album

To display the contents of an album in the Amazon S3 bucket, the application's viewAlbum
function takes an album name and creates the Amazon S3 key for that album. The function then 
calls the listObjects method of the AWS.S3 service object to obtain a list of all the objects (the 
photos) in the album.

The rest of the function takes the list of objects that are in the album and generates the HTML 
needed to display the photos on the webpage.

// Show the photos that exist in an album.
function viewAlbum(albumName) { 
  var albumPhotosKey = encodeURIComponent(albumName) + "/"; 
  s3.listObjects({ Prefix: albumPhotosKey }, function (err, data) { 
    if (err) { 
      return alert("There was an error viewing your album: " + err.message); 
    } 
    // 'this' references the AWS.Request instance that represents the response 
    var href = this.request.httpRequest.endpoint.href; 
    var bucketUrl = href + albumBucketName + "/"; 

    var photos = data.Contents.map(function (photo) { 
      var photoKey = photo.Key; 
      var photoUrl = bucketUrl + encodeURIComponent(photoKey); 
      return getHtml([ 
        "<span>", 
        "<div>", 
        "<br/>", 
        '<img style="width:128px;height:128px;" src="' + photoUrl + '"/>', 
        "</div>", 
        "<div>", 
        "<span>", 
        photoKey.replace(albumPhotosKey, ""), 
        "</span>", 
        "</div>", 
        "</span>", 
      ]); 
    }); 
    var message = photos.length 
      ? "<p>The following photos are present.</p>" 
      : "<p>There are no photos in this album.</p>"; 
    var htmlTemplate = [ 
      "<div>", 

Amazon S3 Browser Examples 230



AWS SDK for JavaScript Developer Guide for SDK v2

      '<button onclick="listAlbums()">', 
      "Back To Albums", 
      "</button>", 
      "</div>", 
      "<h2>", 
      "Album: " + albumName, 
      "</h2>", 
      message, 
      "<div>", 
      getHtml(photos), 
      "</div>", 
      "<h2>", 
      "End of Album: " + albumName, 
      "</h2>", 
      "<div>", 
      '<button onclick="listAlbums()">', 
      "Back To Albums", 
      "</button>", 
      "</div>", 
    ]; 
    document.getElementById("viewer").innerHTML = getHtml(htmlTemplate); 
    document 
      .getElementsByTagName("img")[0] 
      .setAttribute("style", "display:none;"); 
  });
}

Viewing Photos in an Amazon S3 Bucket: Full Code

This section contains the full HTML and JavaScript code for the example in which photos in an 
Amazon S3 bucket can be viewed. See the parent section for details and prerequisites.

The HTML for the example:

<!DOCTYPE html>
<html> 
  <head> 
    <!-- **DO THIS**: --> 
    <!--   Replace SDK_VERSION_NUMBER with the current SDK version number --> 
    <script src="https://sdk.amazonaws.com/js/aws-sdk-SDK_VERSION_NUMBER.js"></script> 
    <script src="./PhotoViewer.js"></script> 
    <script>listAlbums();</script> 
  </head> 
  <body> 

Amazon S3 Browser Examples 231



AWS SDK for JavaScript Developer Guide for SDK v2

    <h1>Photo Album Viewer</h1> 
    <div id="viewer" /> 
  </body>
</html>

This sample code can be found here on GitHub.

The browser script code for the example:

//
// Data constructs and initialization.
//

// **DO THIS**:
//   Replace BUCKET_NAME with the bucket name.
//
var albumBucketName = "BUCKET_NAME";

// **DO THIS**:
//   Replace this block of code with the sample code located at:
//   Cognito -- Manage Identity Pools -- [identity_pool_name] -- Sample Code -- 
 JavaScript
//
// Initialize the Amazon Cognito credentials provider
AWS.config.region = "REGION"; // Region
AWS.config.credentials = new AWS.CognitoIdentityCredentials({ 
  IdentityPoolId: "IDENTITY_POOL_ID",
});

// Create a new service object
var s3 = new AWS.S3({ 
  apiVersion: "2006-03-01", 
  params: { Bucket: albumBucketName },
});

// A utility function to create HTML.
function getHtml(template) { 
  return template.join("\n");
}

//
// Functions
//

Amazon S3 Browser Examples 232

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascript/example_code/s3/s3_PhotoViewer.html


AWS SDK for JavaScript Developer Guide for SDK v2

// List the photo albums that exist in the bucket.
function listAlbums() { 
  s3.listObjects({ Delimiter: "/" }, function (err, data) { 
    if (err) { 
      return alert("There was an error listing your albums: " + err.message); 
    } else { 
      var albums = data.CommonPrefixes.map(function (commonPrefix) { 
        var prefix = commonPrefix.Prefix; 
        var albumName = decodeURIComponent(prefix.replace("/", "")); 
        return getHtml([ 
          "<li>", 
          '<button style="margin:5px;" onclick="viewAlbum(\'' + 
            albumName + 
            "')\">", 
          albumName, 
          "</button>", 
          "</li>", 
        ]); 
      }); 
      var message = albums.length 
        ? getHtml(["<p>Click on an album name to view it.</p>"]) 
        : "<p>You do not have any albums. Please Create album."; 
      var htmlTemplate = [ 
        "<h2>Albums</h2>", 
        message, 
        "<ul>", 
        getHtml(albums), 
        "</ul>", 
      ]; 
      document.getElementById("viewer").innerHTML = getHtml(htmlTemplate); 
    } 
  });
}

// Show the photos that exist in an album.
function viewAlbum(albumName) { 
  var albumPhotosKey = encodeURIComponent(albumName) + "/"; 
  s3.listObjects({ Prefix: albumPhotosKey }, function (err, data) { 
    if (err) { 
      return alert("There was an error viewing your album: " + err.message); 
    } 
    // 'this' references the AWS.Request instance that represents the response 
    var href = this.request.httpRequest.endpoint.href; 
    var bucketUrl = href + albumBucketName + "/"; 

Amazon S3 Browser Examples 233



AWS SDK for JavaScript Developer Guide for SDK v2

    var photos = data.Contents.map(function (photo) { 
      var photoKey = photo.Key; 
      var photoUrl = bucketUrl + encodeURIComponent(photoKey); 
      return getHtml([ 
        "<span>", 
        "<div>", 
        "<br/>", 
        '<img style="width:128px;height:128px;" src="' + photoUrl + '"/>', 
        "</div>", 
        "<div>", 
        "<span>", 
        photoKey.replace(albumPhotosKey, ""), 
        "</span>", 
        "</div>", 
        "</span>", 
      ]); 
    }); 
    var message = photos.length 
      ? "<p>The following photos are present.</p>" 
      : "<p>There are no photos in this album.</p>"; 
    var htmlTemplate = [ 
      "<div>", 
      '<button onclick="listAlbums()">', 
      "Back To Albums", 
      "</button>", 
      "</div>", 
      "<h2>", 
      "Album: " + albumName, 
      "</h2>", 
      message, 
      "<div>", 
      getHtml(photos), 
      "</div>", 
      "<h2>", 
      "End of Album: " + albumName, 
      "</h2>", 
      "<div>", 
      '<button onclick="listAlbums()">', 
      "Back To Albums", 
      "</button>", 
      "</div>", 
    ]; 
    document.getElementById("viewer").innerHTML = getHtml(htmlTemplate); 

Amazon S3 Browser Examples 234



AWS SDK for JavaScript Developer Guide for SDK v2

    document 
      .getElementsByTagName("img")[0] 
      .setAttribute("style", "display:none;"); 
  });
}

This sample code can be found here on GitHub.

Uploading Photos to Amazon S3 from a Browser

This browser script code example shows:

• How to create a browser application that allows users to create photo albums in an Amazon S3 
bucket and upload photos into the albums.

The Scenario

In this example, a simple HTML page provides a browser-based application for creating photo 
albums in an Amazon S3 bucket into which you can upload photos. The application lets you delete 
photos and albums that you add.

The browser script uses the SDK for JavaScript to interact with an Amazon S3 bucket. Use the 
following methods of the Amazon S3 client class to enable the photo album application:

• listObjects

• headObject

• putObject

Amazon S3 Browser Examples 235

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascript/example_code/s3/s3_PhotoViewer.js
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#listObjects-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#headObject-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#putObject-property


AWS SDK for JavaScript Developer Guide for SDK v2

• upload

• deleteObject

• deleteObjects

Prerequisite Tasks

To set up and run this example, you must first complete these tasks:

• In the Amazon S3 console, create an Amazon S3 bucket that you will use to store the photos in 
the album. For more information about creating a bucket in the console, see Creating a Bucket
in the Amazon Simple Storage Service User Guide. Make sure you have both Read and Write
permissions on Objects. For more information about setting bucket permissions, see Setting 
permissions for website access.

• In the Amazon Cognito console, create an Amazon Cognito identity pool using Federated 
Identities with access enabled for unauthenticated users in the same Region as the Amazon S3 
bucket. You need to include the identity pool ID in the code to obtain credentials for the browser 
script. For more information about Amazon Cognito Federated Identities, see Amazon Cognito 
Identity Pools (Federated Identites) in the Amazon Cognito Developer Guide.

• In the IAM console, find the IAM role created by Amazon Cognito for unauthenticated users. 
Add the following policy to grant read and write permissions to an Amazon S3 bucket. For more 
information about creating an IAM role, see Creating a Role to Delegate Permissions to an AWS 
Service in the IAM User Guide.

Use this role policy for the IAM role created by Amazon Cognito for unauthenticated users.

Warning

If you enable access for unauthenticated users, you will grant write access to the bucket, 
and all objects in the bucket, to anyone in the world. This security posture is useful in this 
example to keep it focused on the primary goals of the example. In many live situations, 
however, tighter security, such as using authenticated users and object ownership, is 
highly advisable.

{ 
   "Version": "2012-10-17", 
   "Statement": [ 

Amazon S3 Browser Examples 236

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#upload-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#deleteObject-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#deleteObjects-property
https://console.aws.amazon.com/s3/
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/WebsiteAccessPermissionsReqd.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/WebsiteAccessPermissionsReqd.html
https://console.aws.amazon.com/cognito/
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html


AWS SDK for JavaScript Developer Guide for SDK v2

      { 
         "Effect": "Allow", 
         "Action": [ 
            "s3:DeleteObject", 
            "s3:GetObject", 
            "s3:ListBucket", 
            "s3:PutObject", 
            "s3:PutObjectAcl" 
         ], 
         "Resource": [             
            "arn:aws:s3:::BUCKET_NAME", 
            "arn:aws:s3:::BUCKET_NAME/*" 
         ] 
      } 
   ]
}

Configuring CORS

Before the browser script can access the Amazon S3 bucket, you must first set up its CORS 
configuration as follows.

Important

In the new S3 console, the CORS configuration must be JSON.

JSON

[ 
    { 
        "AllowedHeaders": [ 
            "*" 
        ], 
        "AllowedMethods": [ 
            "HEAD", 
            "GET", 
            "PUT", 
            "POST", 
            "DELETE" 
        ], 
        "AllowedOrigins": [ 

Amazon S3 Browser Examples 237



AWS SDK for JavaScript Developer Guide for SDK v2

            "*" 
        ], 
        "ExposeHeaders": [ 
            "ETag" 
        ] 
    }
]

XML

<?xml version="1.0" encoding="UTF-8"?>
<CORSConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/"> 
    <CORSRule> 
        <AllowedOrigin>*</AllowedOrigin> 
        <AllowedMethod>POST</AllowedMethod> 
        <AllowedMethod>GET</AllowedMethod> 
        <AllowedMethod>PUT</AllowedMethod> 
        <AllowedMethod>DELETE</AllowedMethod> 
        <AllowedMethod>HEAD</AllowedMethod> 
        <AllowedHeader>*</AllowedHeader> 
        <ExposeHeader>ETag</ExposeHeader> 
    </CORSRule>
</CORSConfiguration>

The Web Page

The HTML for the photo upload application consists of a <div> element within which the browser 
script creates the upload user interface. The first <script> element adds the SDK to the browser 
script. The second <script> element adds the external JavaScript file that holds the browser script 
code.

<!DOCTYPE html>
<html> 
  <head> 
     <!-- **DO THIS**: --> 
    <!--   Replace SDK_VERSION_NUMBER with the current SDK version number --> 
    <script src="https://sdk.amazonaws.com/js/aws-sdk-SDK_VERSION_NUMBER.js"></script> 
    <script src="./s3_photoExample.js"></script> 
    <script> 
       function getHtml(template) { 
          return template.join('\n'); 

Amazon S3 Browser Examples 238



AWS SDK for JavaScript Developer Guide for SDK v2

       } 
       listAlbums(); 
    </script> 
  </head> 
  <body> 
    <h1>My Photo Albums App</h1> 
    <div id="app"></div> 
  </body>
</html>

Configuring the SDK

Obtain the credentials needed to configure the SDK by calling the
CognitoIdentityCredentials method, providing the Amazon Cognito identity pool ID. Next, 
create an AWS.S3 service object.

var albumBucketName = "BUCKET_NAME";
var bucketRegion = "REGION";
var IdentityPoolId = "IDENTITY_POOL_ID";

AWS.config.update({ 
  region: bucketRegion, 
  credentials: new AWS.CognitoIdentityCredentials({ 
    IdentityPoolId: IdentityPoolId, 
  }),
});

var s3 = new AWS.S3({ 
  apiVersion: "2006-03-01", 
  params: { Bucket: albumBucketName },
});

Nearly all of the rest of the code in this example is organized into a series of functions that gather 
and present information about the albums in the bucket, upload and display photos uploaded into 
albums, and delete photos and albums. Those functions are:

• listAlbums

• createAlbum

• viewAlbum

• addPhoto

Amazon S3 Browser Examples 239



AWS SDK for JavaScript Developer Guide for SDK v2

• deleteAlbum

• deletePhoto

Listing Albums in the Bucket

The application creates albums in the Amazon S3 bucket as objects whose keys begin with a 
forward slash character, indicating the object functions as a folder. To list all the existing albums in 
the bucket, the application's listAlbums function calls the listObjects method of the AWS.S3
service object while using commonPrefix so the call returns only objects used as albums.

The rest of the function takes the list of albums from the Amazon S3 bucket and generates the 
HTML needed to display the album list in the web page. It also enables deleting and opening 
individual albums.

function listAlbums() { 
  s3.listObjects({ Delimiter: "/" }, function (err, data) { 
    if (err) { 
      return alert("There was an error listing your albums: " + err.message); 
    } else { 
      var albums = data.CommonPrefixes.map(function (commonPrefix) { 
        var prefix = commonPrefix.Prefix; 
        var albumName = decodeURIComponent(prefix.replace("/", "")); 
        return getHtml([ 
          "<li>", 
          "<span onclick=\"deleteAlbum('" + albumName + "')\">X</span>", 
          "<span onclick=\"viewAlbum('" + albumName + "')\">", 
          albumName, 
          "</span>", 
          "</li>", 
        ]); 
      }); 
      var message = albums.length 
        ? getHtml([ 
            "<p>Click on an album name to view it.</p>", 
            "<p>Click on the X to delete the album.</p>", 
          ]) 
        : "<p>You do not have any albums. Please Create album."; 
      var htmlTemplate = [ 
        "<h2>Albums</h2>", 
        message, 
        "<ul>", 
        getHtml(albums), 

Amazon S3 Browser Examples 240



AWS SDK for JavaScript Developer Guide for SDK v2

        "</ul>", 
        "<button onclick=\"createAlbum(prompt('Enter Album Name:'))\">", 
        "Create New Album", 
        "</button>", 
      ]; 
      document.getElementById("app").innerHTML = getHtml(htmlTemplate); 
    } 
  });
}

Creating an Album in the Bucket

To create an album in the Amazon S3 bucket, the application's createAlbum function first 
validates the name given for the new album to ensure it contains suitable characters. The function 
then forms an Amazon S3 object key, passing it to the headObject method of the Amazon S3 
service object. This method returns the metadata for the specified key, so if it returns data, then an 
object with that key already exists.

If the album doesn't already exist, the function calls the putObject method of the AWS.S3 service 
object to create the album. It then calls the viewAlbum function to display the new empty album.

function createAlbum(albumName) { 
  albumName = albumName.trim(); 
  if (!albumName) { 
    return alert("Album names must contain at least one non-space character."); 
  } 
  if (albumName.indexOf("/") !== -1) { 
    return alert("Album names cannot contain slashes."); 
  } 
  var albumKey = encodeURIComponent(albumName); 
  s3.headObject({ Key: albumKey }, function (err, data) { 
    if (!err) { 
      return alert("Album already exists."); 
    } 
    if (err.code !== "NotFound") { 
      return alert("There was an error creating your album: " + err.message); 
    } 
    s3.putObject({ Key: albumKey }, function (err, data) { 
      if (err) { 
        return alert("There was an error creating your album: " + err.message); 
      } 
      alert("Successfully created album."); 

Amazon S3 Browser Examples 241



AWS SDK for JavaScript Developer Guide for SDK v2

      viewAlbum(albumName); 
    }); 
  });
}

Viewing an Album

To display the contents of an album in the Amazon S3 bucket, the application's viewAlbum
function takes an album name and creates the Amazon S3 key for that album. The function then 
calls the listObjects method of the AWS.S3 service object to obtain a list of all the objects 
(photos) in the album.

The rest of the function takes the list of objects (photos) from the album and generates the HTML 
needed to display the photos in the web page. It also enables deleting individual photos and 
navigating back to the album list.

function viewAlbum(albumName) { 
  var albumPhotosKey = encodeURIComponent(albumName) + "/"; 
  s3.listObjects({ Prefix: albumPhotosKey }, function (err, data) { 
    if (err) { 
      return alert("There was an error viewing your album: " + err.message); 
    } 
    // 'this' references the AWS.Response instance that represents the response 
    var href = this.request.httpRequest.endpoint.href; 
    var bucketUrl = href + albumBucketName + "/"; 

    var photos = data.Contents.map(function (photo) { 
      var photoKey = photo.Key; 
      var photoUrl = bucketUrl + encodeURIComponent(photoKey); 
      return getHtml([ 
        "<span>", 
        "<div>", 
        '<img style="width:128px;height:128px;" src="' + photoUrl + '"/>', 
        "</div>", 
        "<div>", 
        "<span onclick=\"deletePhoto('" + 
          albumName + 
          "','" + 
          photoKey + 
          "')\">", 
        "X", 
        "</span>", 
        "<span>", 

Amazon S3 Browser Examples 242



AWS SDK for JavaScript Developer Guide for SDK v2

        photoKey.replace(albumPhotosKey, ""), 
        "</span>", 
        "</div>", 
        "</span>", 
      ]); 
    }); 
    var message = photos.length 
      ? "<p>Click on the X to delete the photo</p>" 
      : "<p>You do not have any photos in this album. Please add photos.</p>"; 
    var htmlTemplate = [ 
      "<h2>", 
      "Album: " + albumName, 
      "</h2>", 
      message, 
      "<div>", 
      getHtml(photos), 
      "</div>", 
      '<input id="photoupload" type="file" accept="image/*">', 
      '<button id="addphoto" onclick="addPhoto(\'' + albumName + "')\">", 
      "Add Photo", 
      "</button>", 
      '<button onclick="listAlbums()">', 
      "Back To Albums", 
      "</button>", 
    ]; 
    document.getElementById("app").innerHTML = getHtml(htmlTemplate); 
  });
}

Adding Photos to an Album

To upload a photo to an album in the Amazon S3 bucket, the application's addPhoto function uses 
a file picker element in the web page to identify a file to upload. It then forms a key for the photo 
to upload from the current album name and the file name.

The function calls the upload method of the Amazon S3 service object to upload the photo. After 
uploading the photo, the function redisplays the album so the uploaded photo appears.

function addPhoto(albumName) { 
  var files = document.getElementById("photoupload").files; 
  if (!files.length) { 
    return alert("Please choose a file to upload first."); 
  } 

Amazon S3 Browser Examples 243



AWS SDK for JavaScript Developer Guide for SDK v2

  var file = files[0]; 
  var fileName = file.name; 
  var albumPhotosKey = encodeURIComponent(albumName) + "/"; 

  var photoKey = albumPhotosKey + fileName; 

  // Use S3 ManagedUpload class as it supports multipart uploads 
  var upload = new AWS.S3.ManagedUpload({ 
    params: { 
      Bucket: albumBucketName, 
      Key: photoKey, 
      Body: file, 
    }, 
  }); 

  var promise = upload.promise(); 

  promise.then( 
    function (data) { 
      alert("Successfully uploaded photo."); 
      viewAlbum(albumName); 
    }, 
    function (err) { 
      return alert("There was an error uploading your photo: ", err.message); 
    } 
  );
}

Deleting a Photo

To delete a photo from an album in the Amazon S3 bucket, the application's deletePhoto
function calls the deleteObject method of the Amazon S3 service object. This deletes the photo 
specified by the photoKey value passed to the function.

function deletePhoto(albumName, photoKey) { 
  s3.deleteObject({ Key: photoKey }, function (err, data) { 
    if (err) { 
      return alert("There was an error deleting your photo: ", err.message); 
    } 
    alert("Successfully deleted photo."); 
    viewAlbum(albumName); 
  });
}

Amazon S3 Browser Examples 244



AWS SDK for JavaScript Developer Guide for SDK v2

Deleting an Album

To delete an album in the Amazon S3 bucket, the application's deleteAlbum function calls the
deleteObjects method of the Amazon S3 service object.

function deleteAlbum(albumName) { 
  var albumKey = encodeURIComponent(albumName) + "/"; 
  s3.listObjects({ Prefix: albumKey }, function (err, data) { 
    if (err) { 
      return alert("There was an error deleting your album: ", err.message); 
    } 
    var objects = data.Contents.map(function (object) { 
      return { Key: object.Key }; 
    }); 
    s3.deleteObjects( 
      { 
        Delete: { Objects: objects, Quiet: true }, 
      }, 
      function (err, data) { 
        if (err) { 
          return alert("There was an error deleting your album: ", err.message); 
        } 
        alert("Successfully deleted album."); 
        listAlbums(); 
      } 
    ); 
  });
}

Uploading Photos to Amazon S3: Full Code

This section contains the full HTML and JavaScript code for the example in which photos are 
uploaded to an Amazon S3 photo album. See the parent section for details and prerequisites.

The HTML for the example:

<!DOCTYPE html>
<html> 
  <head> 
     <!-- **DO THIS**: --> 
    <!--   Replace SDK_VERSION_NUMBER with the current SDK version number --> 
    <script src="https://sdk.amazonaws.com/js/aws-sdk-SDK_VERSION_NUMBER.js"></script> 
    <script src="./s3_photoExample.js"></script> 

Amazon S3 Browser Examples 245



AWS SDK for JavaScript Developer Guide for SDK v2

    <script> 
       function getHtml(template) { 
          return template.join('\n'); 
       } 
       listAlbums(); 
    </script> 
  </head> 
  <body> 
    <h1>My Photo Albums App</h1> 
    <div id="app"></div> 
  </body>
</html>

This sample code can be found here on GitHub.

The browser script code for the example:

var albumBucketName = "BUCKET_NAME";
var bucketRegion = "REGION";
var IdentityPoolId = "IDENTITY_POOL_ID";

AWS.config.update({ 
  region: bucketRegion, 
  credentials: new AWS.CognitoIdentityCredentials({ 
    IdentityPoolId: IdentityPoolId, 
  }),
});

var s3 = new AWS.S3({ 
  apiVersion: "2006-03-01", 
  params: { Bucket: albumBucketName },
});

function listAlbums() { 
  s3.listObjects({ Delimiter: "/" }, function (err, data) { 
    if (err) { 
      return alert("There was an error listing your albums: " + err.message); 
    } else { 
      var albums = data.CommonPrefixes.map(function (commonPrefix) { 
        var prefix = commonPrefix.Prefix; 
        var albumName = decodeURIComponent(prefix.replace("/", "")); 
        return getHtml([ 
          "<li>", 
          "<span onclick=\"deleteAlbum('" + albumName + "')\">X</span>", 

Amazon S3 Browser Examples 246

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascript/example_code/s3/s3_photoExample.html


AWS SDK for JavaScript Developer Guide for SDK v2

          "<span onclick=\"viewAlbum('" + albumName + "')\">", 
          albumName, 
          "</span>", 
          "</li>", 
        ]); 
      }); 
      var message = albums.length 
        ? getHtml([ 
            "<p>Click on an album name to view it.</p>", 
            "<p>Click on the X to delete the album.</p>", 
          ]) 
        : "<p>You do not have any albums. Please Create album."; 
      var htmlTemplate = [ 
        "<h2>Albums</h2>", 
        message, 
        "<ul>", 
        getHtml(albums), 
        "</ul>", 
        "<button onclick=\"createAlbum(prompt('Enter Album Name:'))\">", 
        "Create New Album", 
        "</button>", 
      ]; 
      document.getElementById("app").innerHTML = getHtml(htmlTemplate); 
    } 
  });
}

function createAlbum(albumName) { 
  albumName = albumName.trim(); 
  if (!albumName) { 
    return alert("Album names must contain at least one non-space character."); 
  } 
  if (albumName.indexOf("/") !== -1) { 
    return alert("Album names cannot contain slashes."); 
  } 
  var albumKey = encodeURIComponent(albumName); 
  s3.headObject({ Key: albumKey }, function (err, data) { 
    if (!err) { 
      return alert("Album already exists."); 
    } 
    if (err.code !== "NotFound") { 
      return alert("There was an error creating your album: " + err.message); 
    } 
    s3.putObject({ Key: albumKey }, function (err, data) { 

Amazon S3 Browser Examples 247



AWS SDK for JavaScript Developer Guide for SDK v2

      if (err) { 
        return alert("There was an error creating your album: " + err.message); 
      } 
      alert("Successfully created album."); 
      viewAlbum(albumName); 
    }); 
  });
}

function viewAlbum(albumName) { 
  var albumPhotosKey = encodeURIComponent(albumName) + "/"; 
  s3.listObjects({ Prefix: albumPhotosKey }, function (err, data) { 
    if (err) { 
      return alert("There was an error viewing your album: " + err.message); 
    } 
    // 'this' references the AWS.Response instance that represents the response 
    var href = this.request.httpRequest.endpoint.href; 
    var bucketUrl = href + albumBucketName + "/"; 

    var photos = data.Contents.map(function (photo) { 
      var photoKey = photo.Key; 
      var photoUrl = bucketUrl + encodeURIComponent(photoKey); 
      return getHtml([ 
        "<span>", 
        "<div>", 
        '<img style="width:128px;height:128px;" src="' + photoUrl + '"/>', 
        "</div>", 
        "<div>", 
        "<span onclick=\"deletePhoto('" + 
          albumName + 
          "','" + 
          photoKey + 
          "')\">", 
        "X", 
        "</span>", 
        "<span>", 
        photoKey.replace(albumPhotosKey, ""), 
        "</span>", 
        "</div>", 
        "</span>", 
      ]); 
    }); 
    var message = photos.length 
      ? "<p>Click on the X to delete the photo</p>" 

Amazon S3 Browser Examples 248



AWS SDK for JavaScript Developer Guide for SDK v2

      : "<p>You do not have any photos in this album. Please add photos.</p>"; 
    var htmlTemplate = [ 
      "<h2>", 
      "Album: " + albumName, 
      "</h2>", 
      message, 
      "<div>", 
      getHtml(photos), 
      "</div>", 
      '<input id="photoupload" type="file" accept="image/*">', 
      '<button id="addphoto" onclick="addPhoto(\'' + albumName + "')\">", 
      "Add Photo", 
      "</button>", 
      '<button onclick="listAlbums()">', 
      "Back To Albums", 
      "</button>", 
    ]; 
    document.getElementById("app").innerHTML = getHtml(htmlTemplate); 
  });
}

function addPhoto(albumName) { 
  var files = document.getElementById("photoupload").files; 
  if (!files.length) { 
    return alert("Please choose a file to upload first."); 
  } 
  var file = files[0]; 
  var fileName = file.name; 
  var albumPhotosKey = encodeURIComponent(albumName) + "/"; 

  var photoKey = albumPhotosKey + fileName; 

  // Use S3 ManagedUpload class as it supports multipart uploads 
  var upload = new AWS.S3.ManagedUpload({ 
    params: { 
      Bucket: albumBucketName, 
      Key: photoKey, 
      Body: file, 
    }, 
  }); 

  var promise = upload.promise(); 

  promise.then( 

Amazon S3 Browser Examples 249



AWS SDK for JavaScript Developer Guide for SDK v2

    function (data) { 
      alert("Successfully uploaded photo."); 
      viewAlbum(albumName); 
    }, 
    function (err) { 
      return alert("There was an error uploading your photo: ", err.message); 
    } 
  );
}

function deletePhoto(albumName, photoKey) { 
  s3.deleteObject({ Key: photoKey }, function (err, data) { 
    if (err) { 
      return alert("There was an error deleting your photo: ", err.message); 
    } 
    alert("Successfully deleted photo."); 
    viewAlbum(albumName); 
  });
}

function deleteAlbum(albumName) { 
  var albumKey = encodeURIComponent(albumName) + "/"; 
  s3.listObjects({ Prefix: albumKey }, function (err, data) { 
    if (err) { 
      return alert("There was an error deleting your album: ", err.message); 
    } 
    var objects = data.Contents.map(function (object) { 
      return { Key: object.Key }; 
    }); 
    s3.deleteObjects( 
      { 
        Delete: { Objects: objects, Quiet: true }, 
      }, 
      function (err, data) { 
        if (err) { 
          return alert("There was an error deleting your album: ", err.message); 
        } 
        alert("Successfully deleted album."); 
        listAlbums(); 
      } 
    ); 
  });
}

Amazon S3 Browser Examples 250



AWS SDK for JavaScript Developer Guide for SDK v2

This sample code can be found here on GitHub.

Amazon S3 Node.js Examples

The following topics show examples of how the AWS SDK for JavaScript can be used to interact 
with Amazon S3 buckets using Node.js.

Topics

• Creating and Using Amazon S3 Buckets

• Configuring Amazon S3 Buckets

• Managing Amazon S3 Bucket Access Permissions

• Working with Amazon S3 Bucket Policies

• Using an Amazon S3 Bucket as a Static Web Host

Creating and Using Amazon S3 Buckets

This Node.js code example shows:

• How to obtain and display a list of Amazon S3 buckets in your account.

• How to create an Amazon S3 bucket.

• How to upload an object to a specified bucket.

The Scenario

In this example, a series of Node.js modules are used to obtain a list of existing Amazon S3 buckets, 
create a bucket, and upload a file to a specified bucket. These Node.js modules use the SDK for 
JavaScript to get information from and upload files to an Amazon S3 bucket using these methods 
of the Amazon S3 client class:

• listBuckets

• createBucket

• listObjects

Amazon S3 Node.js Examples 251

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascript/example_code/s3/s3_photoExample.js
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#listBuckets-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#createBucket-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#listObjects-property


AWS SDK for JavaScript Developer Guide for SDK v2

• upload

• deleteBucket

Prerequisite Tasks

To set up and run this example, you must first complete these tasks:

• Install Node.js. For more information about installing Node.js, see the Node.js website.

• Create a shared configurations file with your user credentials. For more information about 
providing a shared credentials file, see Loading Credentials in Node.js from the Shared 
Credentials File.

Configuring the SDK

Configure the SDK for JavaScript by creating a global configuration object then setting the Region 
for your code. In this example, the Region is set to us-west-2.

// Load the SDK for JavaScript
var AWS = require('aws-sdk');
// Set the Region  
AWS.config.update({region: 'us-west-2'});

Displaying a List of Amazon S3 Buckets

Create a Node.js module with the file name s3_listbuckets.js. Make sure to configure the SDK 
as previously shown. To access Amazon Simple Storage Service, create an AWS.S3 service object. 
Call the listBuckets method of the Amazon S3 service object to retrieve a list of your buckets. 
The data parameter of the callback function has a Buckets property containing an array of maps 
to represent the buckets. Display the bucket list by logging it to the console.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create S3 service object
s3 = new AWS.S3({ apiVersion: "2006-03-01" });

// Call S3 to list the buckets

Amazon S3 Node.js Examples 252

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#upload-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#deleteBucket-property
https://nodejs.org


AWS SDK for JavaScript Developer Guide for SDK v2

s3.listBuckets(function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Success", data.Buckets); 
  }
});

To run the example, type the following at the command line.

node s3_listbuckets.js

This sample code can be found here on GitHub.

Creating an Amazon S3 Bucket

Create a Node.js module with the file name s3_createbucket.js. Make sure to configure 
the SDK as previously shown. Create an AWS.S3 service object. The module will take a single 
command-line argument to specify a name for the new bucket.

Add a variable to hold the parameters used to call the createBucket method of the Amazon S3 
service object, including the name for the newly created bucket. The callback function logs the new 
bucket's location to the console after Amazon S3 successfully creates it.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create S3 service object
s3 = new AWS.S3({ apiVersion: "2006-03-01" });

// Create the parameters for calling createBucket
var bucketParams = { 
  Bucket: process.argv[2],
};

// call S3 to create the bucket
s3.createBucket(bucketParams, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 

Amazon S3 Node.js Examples 253

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascript/example_code/s3/s3_listbuckets.js


AWS SDK for JavaScript Developer Guide for SDK v2

    console.log("Success", data.Location); 
  }
});

To run the example, type the following at the command line.

node s3_createbucket.js BUCKET_NAME

This sample code can be found here on GitHub.

Uploading a File to an Amazon S3 Bucket

Create a Node.js module with the file name s3_upload.js. Make sure to configure the SDK as 
previously shown. Create an AWS.S3 service object. The module will take two command-line 
arguments, the first one to specify the destination bucket and the second to specify the file to 
upload.

Create a variable with the parameters needed to call the upload method of the Amazon S3 service 
object. Provide the name of the target bucket in the Bucket parameter. The Key parameter is set 
to the name of the selected file, which you can obtain using the Node.js path module. The Body
parameter is set to the contents of the file, which you can obtain using createReadStream from 
the Node.js fs module.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create S3 service object
var s3 = new AWS.S3({ apiVersion: "2006-03-01" });

// call S3 to retrieve upload file to specified bucket
var uploadParams = { Bucket: process.argv[2], Key: "", Body: "" };
var file = process.argv[3];

// Configure the file stream and obtain the upload parameters
var fs = require("fs");
var fileStream = fs.createReadStream(file);
fileStream.on("error", function (err) { 
  console.log("File Error", err);
});
uploadParams.Body = fileStream;

Amazon S3 Node.js Examples 254

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascript/example_code/s3/s3_createbucket.js


AWS SDK for JavaScript Developer Guide for SDK v2

var path = require("path");
uploadParams.Key = path.basename(file);

// call S3 to retrieve upload file to specified bucket
s3.upload(uploadParams, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } 
  if (data) { 
    console.log("Upload Success", data.Location); 
  }
});

To run the example, type the following at the command line.

node s3_upload.js BUCKET_NAME FILE_NAME

This sample code can be found here on GitHub.

Listing Objects in an Amazon S3 Bucket

Create a Node.js module with the file name s3_listobjects.js. Make sure to configure the SDK 
as previously shown. Create an AWS.S3 service object.

Add a variable to hold the parameters used to call the listObjects method of the Amazon S3 
service object, including the name of the bucket to read. The callback function logs a list of objects 
(files) or a failure message.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create S3 service object
s3 = new AWS.S3({ apiVersion: "2006-03-01" });

// Create the parameters for calling listObjects
var bucketParams = { 
  Bucket: "BUCKET_NAME",
};

// Call S3 to obtain a list of the objects in the bucket

Amazon S3 Node.js Examples 255

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascript/example_code/s3/s3_upload.js


AWS SDK for JavaScript Developer Guide for SDK v2

s3.listObjects(bucketParams, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Success", data); 
  }
});

To run the example, type the following at the command line.

node s3_listobjects.js

This sample code can be found here on GitHub.

Deleting an Amazon S3 Bucket

Create a Node.js module with the file name s3_deletebucket.js. Make sure to configure the 
SDK as previously shown. Create an AWS.S3 service object.

Add a variable to hold the parameters used to call the createBucket method of the Amazon S3 
service object, including the name of the bucket to delete. The bucket must be empty in order to 
delete it. The callback function logs a success or failure message.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create S3 service object
s3 = new AWS.S3({ apiVersion: "2006-03-01" });

// Create params for S3.deleteBucket
var bucketParams = { 
  Bucket: "BUCKET_NAME",
};

// Call S3 to delete the bucket
s3.deleteBucket(bucketParams, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Success", data); 

Amazon S3 Node.js Examples 256

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascript/example_code/s3/s3_listobjects.js


AWS SDK for JavaScript Developer Guide for SDK v2

  }
});

To run the example, type the following at the command line.

node s3_deletebucket.js

This sample code can be found here on GitHub.

Configuring Amazon S3 Buckets

This Node.js code example shows:

• How to configure the cross-origin resource sharing (CORS) permissions for a bucket.

The Scenario

In this example, a series of Node.js modules are used to list your Amazon S3 buckets and to 
configure CORS and bucket logging. The Node.js modules use the SDK for JavaScript to configure a 
selected Amazon S3 bucket using these methods of the Amazon S3 client class:

• getBucketCors

• putBucketCors

For more information about using CORS configuration with an Amazon S3 bucket, see Cross-Origin 
Resource Sharing (CORS) in the Amazon Simple Storage Service User Guide.

Prerequisite Tasks

To set up and run this example, you must first complete these tasks:

• Install Node.js. For more information about installing Node.js, see the Node.js website.

• Create a shared configurations file with your user credentials. For more information about 
providing a shared credentials file, see Loading Credentials in Node.js from the Shared 
Credentials File.

Amazon S3 Node.js Examples 257

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascript/example_code/s3/s3_deletebucket.js
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#getBucketCors-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#putBucketCors-property
https://docs.aws.amazon.com/AmazonS3/latest/dev/cors.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/cors.html
https://nodejs.org


AWS SDK for JavaScript Developer Guide for SDK v2

Configuring the SDK

Configure the SDK for JavaScript by creating a global configuration object then setting the Region 
for your code. In this example, the Region is set to us-west-2.

// Load the SDK for JavaScript
var AWS = require('aws-sdk');
// Set the Region  
AWS.config.update({region: 'us-west-2'});

Retrieving a Bucket CORS Configuration

Create a Node.js module with the file name s3_getcors.js. The module will take a single 
command-line argument to specify the bucket whose CORS configuration you want. Make sure to 
configure the SDK as previously shown. Create an AWS.S3 service object.

The only parameter you need to pass is the name of the selected bucket when calling the
getBucketCors method. If the bucket currently has a CORS configuration, that configuration is 
returned by Amazon S3 as the CORSRules property of the data parameter passed to the callback 
function.

If the selected bucket has no CORS configuration, that information is returned to the callback 
function in the error parameter.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create S3 service object
s3 = new AWS.S3({ apiVersion: "2006-03-01" });

// Set the parameters for S3.getBucketCors
var bucketParams = { Bucket: process.argv[2] };

// call S3 to retrieve CORS configuration for selected bucket
s3.getBucketCors(bucketParams, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else if (data) { 
    console.log("Success", JSON.stringify(data.CORSRules)); 
  }

Amazon S3 Node.js Examples 258



AWS SDK for JavaScript Developer Guide for SDK v2

});

To run the example, type the following at the command line.

node s3_getcors.js BUCKET_NAME

This sample code can be found here on GitHub.

Setting a Bucket CORS Configuration

Create a Node.js module with the file name s3_setcors.js. The module takes multiple 
command-line arguments, the first of which specifies the bucket whose CORS configuration you 
want to set. Additional arguments enumerate the HTTP methods (POST, GET, PUT, PATCH, DELETE, 
POST) you want to allow for the bucket. Configure the SDK as previously shown.

Create an AWS.S3 service object. Next create a JSON object to hold the values for the CORS 
configuration as required by the putBucketCors method of the AWS.S3 service object. Specify
"Authorization" for the AllowedHeaders value and "*" for the AllowedOrigins value. Set 
the value of AllowedMethods as empty array initially.

Specify the allowed methods as command line parameters to the Node.js module, adding each 
of the methods that match one of the parameters. Add the resulting CORS configuration to the 
array of configurations contained in the CORSRules parameter. Specify the bucket you want to 
configure for CORS in the Bucket parameter.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create S3 service object
s3 = new AWS.S3({ apiVersion: "2006-03-01" });

// Create initial parameters JSON for putBucketCors
var thisConfig = { 
  AllowedHeaders: ["Authorization"], 
  AllowedMethods: [], 
  AllowedOrigins: ["*"], 
  ExposeHeaders: [], 
  MaxAgeSeconds: 3000,
};

Amazon S3 Node.js Examples 259

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascript/example_code/s3/s3_getcors.js


AWS SDK for JavaScript Developer Guide for SDK v2

// Assemble the list of allowed methods based on command line parameters
var allowedMethods = [];
process.argv.forEach(function (val, index, array) { 
  if (val.toUpperCase() === "POST") { 
    allowedMethods.push("POST"); 
  } 
  if (val.toUpperCase() === "GET") { 
    allowedMethods.push("GET"); 
  } 
  if (val.toUpperCase() === "PUT") { 
    allowedMethods.push("PUT"); 
  } 
  if (val.toUpperCase() === "PATCH") { 
    allowedMethods.push("PATCH"); 
  } 
  if (val.toUpperCase() === "DELETE") { 
    allowedMethods.push("DELETE"); 
  } 
  if (val.toUpperCase() === "HEAD") { 
    allowedMethods.push("HEAD"); 
  }
});

// Copy the array of allowed methods into the config object
thisConfig.AllowedMethods = allowedMethods;
// Create array of configs then add the config object to it
var corsRules = new Array(thisConfig);

// Create CORS params
var corsParams = { 
  Bucket: process.argv[2], 
  CORSConfiguration: { CORSRules: corsRules },
};

// set the new CORS configuration on the selected bucket
s3.putBucketCors(corsParams, function (err, data) { 
  if (err) { 
    // display error message 
    console.log("Error", err); 
  } else { 
    // update the displayed CORS config for the selected bucket 
    console.log("Success", data); 
  }

Amazon S3 Node.js Examples 260



AWS SDK for JavaScript Developer Guide for SDK v2

});

To run the example, type the following at the command line including one or more HTTP methods 
as shown.

node s3_setcors.js BUCKET_NAME get put

This sample code can be found here on GitHub.

Managing Amazon S3 Bucket Access Permissions

This Node.js code example shows:

• How to retrieve or set the access control list for an Amazon S3 bucket.

The Scenario

In this example, a Node.js module is used to display the bucket access control list (ACL) for a 
selected bucket and apply changes to the ACL for a selected bucket. The Node.js module uses the 
SDK for JavaScript to manage Amazon S3 bucket access permissions using these methods of the 
Amazon S3 client class:

• getBucketAcl

• putBucketAcl

For more information about access control lists for Amazon S3 buckets, see  Managing Access with 
ACLs in the Amazon Simple Storage Service User Guide.

Prerequisite Tasks

To set up and run this example, you must first complete these tasks:

• Install Node.js. For more information about installing Node.js, see the Node.js website.

Amazon S3 Node.js Examples 261

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascript/example_code/s3/s3_setcors.js
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#getBucketAcl-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#putBucketAcl-property
https://docs.aws.amazon.com/AmazonS3/latest/dev/S3_ACLs_UsingACLs.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/S3_ACLs_UsingACLs.html
https://nodejs.org


AWS SDK for JavaScript Developer Guide for SDK v2

• Create a shared configurations file with your user credentials. For more information about 
providing a shared credentials file, see Loading Credentials in Node.js from the Shared 
Credentials File.

Configuring the SDK

Configure the SDK for JavaScript by creating a global configuration object then setting the Region 
for your code. In this example, the Region is set to us-west-2.

// Load the SDK for JavaScript
var AWS = require('aws-sdk');
// Set the Region  
AWS.config.update({region: 'us-west-2'});

Retrieving the Current Bucket Access Control List

Create a Node.js module with the file name s3_getbucketacl.js. The module will take a single 
command-line argument to specify the bucket whose ACL configuration you want. Make sure to 
configure the SDK as previously shown.

Create an AWS.S3 service object. The only parameter you need to pass is the name of the selected 
bucket when calling the getBucketAcl method. The current access control list configuration is 
returned by Amazon S3 in the data parameter passed to the callback function.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create S3 service object
s3 = new AWS.S3({ apiVersion: "2006-03-01" });

var bucketParams = { Bucket: process.argv[2] };
// call S3 to retrieve policy for selected bucket
s3.getBucketAcl(bucketParams, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else if (data) { 
    console.log("Success", data.Grants); 
  }

Amazon S3 Node.js Examples 262



AWS SDK for JavaScript Developer Guide for SDK v2

});

To run the example, type the following at the command line.

node s3_getbucketacl.js BUCKET_NAME

This sample code can be found here on GitHub.

Working with Amazon S3 Bucket Policies

This Node.js code example shows:

• How to retrieve the bucket policy of an Amazon S3 bucket.

• How to add or update the bucket policy of an Amazon S3 bucket.

• How to delete the bucket policy of an Amazon S3 bucket.

The Scenario

In this example, a series of Node.js modules are used to retrieve, set, or delete a bucket policy on 
an Amazon S3 bucket. The Node.js modules use the SDK for JavaScript to configure policy for a 
selected Amazon S3 bucket using these methods of the Amazon S3 client class:

• getBucketPolicy

• putBucketPolicy

• deleteBucketPolicy

For more information about bucket policies for Amazon S3 buckets, see  Using Bucket Policies and 
User Policies in the Amazon Simple Storage Service User Guide.

Prerequisite Tasks

To set up and run this example, you must first complete these tasks:

• Install Node.js. For more information about installing Node.js, see the Node.js website.

Amazon S3 Node.js Examples 263

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascript/example_code/s3/s3_getbucketacl.js
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#getBucketPolicy-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#putBucketPolicy-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#deleteBucketPolicy-property
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-iam-policies.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-iam-policies.html
https://nodejs.org


AWS SDK for JavaScript Developer Guide for SDK v2

• Create a shared configurations file with your user credentials. For more information about 
providing a shared credentials file, see Loading Credentials in Node.js from the Shared 
Credentials File.

Configuring the SDK

Configure the SDK for JavaScript by creating a global configuration object then setting the Region 
for your code. In this example, the Region is set to us-west-2.

// Load the SDK for JavaScript
var AWS = require('aws-sdk');
// Set the Region  
AWS.config.update({region: 'us-west-2'});

Retrieving the Current Bucket Policy

Create a Node.js module with the file name s3_getbucketpolicy.js. The module takes a single 
command-line argument that specifies the bucket whose policy you want. Make sure to configure 
the SDK as previously shown.

Create an AWS.S3 service object. The only parameter you need to pass is the name of the selected 
bucket when calling the getBucketPolicy method. If the bucket currently has a policy, that 
policy is returned by Amazon S3 in the data parameter passed to the callback function.

If the selected bucket has no policy, that information is returned to the callback function in the
error parameter.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create S3 service object
s3 = new AWS.S3({ apiVersion: "2006-03-01" });

var bucketParams = { Bucket: process.argv[2] };
// call S3 to retrieve policy for selected bucket
s3.getBucketPolicy(bucketParams, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else if (data) { 

Amazon S3 Node.js Examples 264



AWS SDK for JavaScript Developer Guide for SDK v2

    console.log("Success", data.Policy); 
  }
});

To run the example, type the following at the command line.

node s3_getbucketpolicy.js BUCKET_NAME

This sample code can be found here on GitHub.

Setting a Simple Bucket Policy

Create a Node.js module with the file name s3_setbucketpolicy.js. The module takes a single 
command-line argument that specifies the bucket whose policy you want to apply. Configure the 
SDK as previously shown.

Create an AWS.S3 service object. Bucket policies are specified in JSON. First, create a JSON object 
that contains all of the values to specify the policy except for the Resource value that identifies 
the bucket.

Format the Resource string required by the policy, incorporating the name of the selected 
bucket. Insert that string into the JSON object. Prepare the parameters for the putBucketPolicy
method, including the name of the bucket and the JSON policy converted to a string value.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create S3 service object
s3 = new AWS.S3({ apiVersion: "2006-03-01" });

var readOnlyAnonUserPolicy = { 
  Version: "2012-10-17", 
  Statement: [ 
    { 
      Sid: "AddPerm", 
      Effect: "Allow", 
      Principal: "*", 
      Action: ["s3:GetObject"], 
      Resource: [""], 
    }, 

Amazon S3 Node.js Examples 265

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascript/example_code/s3/s3_getbucketpolicy.js


AWS SDK for JavaScript Developer Guide for SDK v2

  ],
};

// create selected bucket resource string for bucket policy
var bucketResource = "arn:aws:s3:::" + process.argv[2] + "/*";
readOnlyAnonUserPolicy.Statement[0].Resource[0] = bucketResource;

// convert policy JSON into string and assign into params
var bucketPolicyParams = { 
  Bucket: process.argv[2], 
  Policy: JSON.stringify(readOnlyAnonUserPolicy),
};

// set the new policy on the selected bucket
s3.putBucketPolicy(bucketPolicyParams, function (err, data) { 
  if (err) { 
    // display error message 
    console.log("Error", err); 
  } else { 
    console.log("Success", data); 
  }
});

To run the example, type the following at the command line.

node s3_setbucketpolicy.js BUCKET_NAME

This sample code can be found here on GitHub.

Deleting a Bucket Policy

Create a Node.js module with the file name s3_deletebucketpolicy.js. The module takes 
a single command-line argument that specifies the bucket whose policy you want to delete. 
Configure the SDK as previously shown.

Create an AWS.S3 service object. The only parameter you need to pass when calling the
deleteBucketPolicy method is the name of the selected bucket.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

Amazon S3 Node.js Examples 266

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascript/example_code/s3/s3_setbucketpolicy.js


AWS SDK for JavaScript Developer Guide for SDK v2

// Create S3 service object
s3 = new AWS.S3({ apiVersion: "2006-03-01" });

var bucketParams = { Bucket: process.argv[2] };
// call S3 to delete policy for selected bucket
s3.deleteBucketPolicy(bucketParams, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else if (data) { 
    console.log("Success", data); 
  }
});

To run the example, type the following at the command line.

node s3_deletebucketpolicy.js BUCKET_NAME

This sample code can be found here on GitHub.

Using an Amazon S3 Bucket as a Static Web Host

This Node.js code example shows:

• How to set up an Amazon S3 bucket as a static web host.

The Scenario

In this example, a series of Node.js modules are used to configure any of your buckets to act as a 
static web host. The Node.js modules use the SDK for JavaScript to configure a selected Amazon S3 
bucket using these methods of the Amazon S3 client class:

• getBucketWebsite

• putBucketWebsite

• deleteBucketWebsite

Amazon S3 Node.js Examples 267

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascript/example_code/s3/s3_deletebucketpolicy.js
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#getBucketWebsite-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#putBucketWebsite-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#deleteBucketWebsite-property


AWS SDK for JavaScript Developer Guide for SDK v2

For more information about using an Amazon S3 bucket as a static web host, see Hosting a Static 
Website on Amazon S3 in the Amazon Simple Storage Service User Guide.

Prerequisite Tasks

To set up and run this example, you must first complete these tasks:

• Install Node.js. For more information about installing Node.js, see the Node.js website.

• Create a shared configurations file with your user credentials. For more information about 
providing a shared credentials file, see Loading Credentials in Node.js from the Shared 
Credentials File.

Configuring the SDK

Configure the SDK for JavaScript by creating a global configuration object then setting the Region 
for your code. In this example, the Region is set to us-west-2.

// Load the SDK for JavaScript
var AWS = require('aws-sdk');
// Set the Region  
AWS.config.update({region: 'us-west-2'});

Retrieving the Current Bucket Website Configuration

Create a Node.js module with the file name s3_getbucketwebsite.js. The module takes a 
single command-line argument that specifies the bucket whose website configuration you want. 
Configure the SDK as previously shown.

Create an AWS.S3 service object. Create a function that retrieves the current bucket website 
configuration for the bucket selected in the bucket list. The only parameter you need to pass is the 
name of the selected bucket when calling the getBucketWebsite method. If the bucket currently 
has a website configuration, that configuration is returned by Amazon S3 in the data parameter 
passed to the callback function.

If the selected bucket has no website configuration, that information is returned to the callback 
function in the err parameter.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

Amazon S3 Node.js Examples 268

https://docs.aws.amazon.com/AmazonS3/latest/dev/WebsiteHosting.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/WebsiteHosting.html
https://nodejs.org


AWS SDK for JavaScript Developer Guide for SDK v2

// Create S3 service object
s3 = new AWS.S3({ apiVersion: "2006-03-01" });

var bucketParams = { Bucket: process.argv[2] };

// call S3 to retrieve the website configuration for selected bucket
s3.getBucketWebsite(bucketParams, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else if (data) { 
    console.log("Success", data); 
  }
});

To run the example, type the following at the command line.

node s3_getbucketwebsite.js BUCKET_NAME

This sample code can be found here on GitHub.

Setting a Bucket Website Configuration

Create a Node.js module with the file name s3_setbucketwebsite.js. Make sure to configure 
the SDK as previously shown. Create an AWS.S3 service object.

Create a function that applies a bucket website configuration. The configuration allows the 
selected bucket to serve as a static web host. Website configurations are specified in JSON. First, 
create a JSON object that contains all the values to specify the website configuration, except for 
the Key value that identifies the error document, and the Suffix value that identifies the index 
document.

Insert the values of the text input elements into the JSON object. Prepare the parameters for 
the putBucketWebsite method, including the name of the bucket and the JSON website 
configuration.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create S3 service object

Amazon S3 Node.js Examples 269

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascript/example_code/s3/s3_getbucketwebsite.js


AWS SDK for JavaScript Developer Guide for SDK v2

s3 = new AWS.S3({ apiVersion: "2006-03-01" });

// Create JSON for putBucketWebsite parameters
var staticHostParams = { 
  Bucket: "", 
  WebsiteConfiguration: { 
    ErrorDocument: { 
      Key: "", 
    }, 
    IndexDocument: { 
      Suffix: "", 
    }, 
  },
};

// Insert specified bucket name and index and error documents into params JSON
// from command line arguments
staticHostParams.Bucket = process.argv[2];
staticHostParams.WebsiteConfiguration.IndexDocument.Suffix = process.argv[3];
staticHostParams.WebsiteConfiguration.ErrorDocument.Key = process.argv[4];

// set the new website configuration on the selected bucket
s3.putBucketWebsite(staticHostParams, function (err, data) { 
  if (err) { 
    // display error message 
    console.log("Error", err); 
  } else { 
    // update the displayed website configuration for the selected bucket 
    console.log("Success", data); 
  }
});

To run the example, type the following at the command line.

node s3_setbucketwebsite.js BUCKET_NAME INDEX_PAGE ERROR_PAGE

This sample code can be found here on GitHub.

Deleting a Bucket Website Configuration

Create a Node.js module with the file name s3_deletebucketwebsite.js. Make sure to 
configure the SDK as previously shown. Create an AWS.S3 service object.

Amazon S3 Node.js Examples 270

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascript/example_code/s3/s3_setbucketwebsite.js


AWS SDK for JavaScript Developer Guide for SDK v2

Create a function that deletes the website configuration for the selected bucket. The only 
parameter you need to pass when calling the deleteBucketWebsite method is the name of the 
selected bucket.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create S3 service object
s3 = new AWS.S3({ apiVersion: "2006-03-01" });

var bucketParams = { Bucket: process.argv[2] };

// call S3 to delete website configuration for selected bucket
s3.deleteBucketWebsite(bucketParams, function (error, data) { 
  if (error) { 
    console.log("Error", err); 
  } else if (data) { 
    console.log("Success", data); 
  }
});

To run the example, type the following at the command line.

node s3_deletebucketwebsite.js BUCKET_NAME

This sample code can be found here on GitHub.

Amazon Simple Email Service Examples

Amazon Simple Email Service (Amazon SES) is a cloud-based email sending service designed to 
help digital marketers and application developers send marketing, notification, and transactional 
emails. It is a reliable, cost-effective service for businesses of all sizes that use email to keep in 
contact with their customers.

Amazon SES Examples 271

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascript/example_code/s3/s3_deletebucketwebsite.js


AWS SDK for JavaScript Developer Guide for SDK v2

The JavaScript API for Amazon SES is exposed through the AWS.SES client class. For more 
information about using the Amazon SES client class, see Class: AWS.SES in the API reference.

Topics

• Managing Amazon SES Identities

• Working with Email Templates in Amazon SES

• Sending Email Using Amazon SES

• Using IP Address Filters for Email Receipt in Amazon SES

• Using Receipt Rules in Amazon SES

Managing Amazon SES Identities

This Node.js code example shows:

• How to verify email addresses and domains used with Amazon SES.

• How to assign IAM policy to your Amazon SES identities.

• How to list all Amazon SES identities for your AWS account.

• How to delete identities used with Amazon SES.

Managing Identities 272

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SES.html


AWS SDK for JavaScript Developer Guide for SDK v2

An Amazon SES identity is an email address or domain that Amazon SES uses to send email. 
Amazon SES requires you to verify your email identities, confirming that you own them and 
preventing others from using them.

For details on how to verify email addresses and domains in Amazon SES, see Verifying Email 
Addresses and Domains in Amazon SES in the Amazon Simple Email Service Developer Guide. For 
information about sending authorization in Amazon SES, see Overview of Amazon SES Sending 
Authorization .

The Scenario

In this example, you use a series of Node.js modules to verify and manage Amazon SES identities. 
The Node.js modules use the SDK for JavaScript to verify email addresses and domains, using these 
methods of the AWS.SES client class:

• listIdentities

• deleteIdentity

• verifyEmailIdentity

• verifyDomainIdentity

Prerequisite Tasks

To set up and run this example, you must first complete these tasks:

• Install Node.js. For more information about installing Node.js, see the Node.js website.

• Create a shared configurations file with your user credentials. For more information about 
providing a credentials JSON file, see Loading Credentials in Node.js from the Shared Credentials 
File.

Configuring the SDK

Configure the SDK for JavaScript by creating a global configuration object then setting the Region 
for your code. In this example, the Region is set to us-west-2.

// Load the SDK for JavaScript
var AWS = require('aws-sdk');

Managing Identities 273

https://docs.aws.amazon.com/ses/latest/DeveloperGuide/verify-addresses-and-domains.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/verify-addresses-and-domains.html
Amazon%20Simple%20Email%20Service%20Developer%20Guidesending-authorization-overview.html
Amazon%20Simple%20Email%20Service%20Developer%20Guidesending-authorization-overview.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SES.html#listIdentities-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SES.html#deleteIdentity-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SES.html#verifyEmailIdentity-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SES.html#verifyDomainIdentity-property
https://nodejs.org


AWS SDK for JavaScript Developer Guide for SDK v2

// Set the Region  
AWS.config.update({region: 'us-west-2'});

Listing Your Identities

In this example, use a Node.js module to list email addresses and domains to use with Amazon 
SES. Create a Node.js module with the file name ses_listidentities.js. Configure the SDK as 
previously shown.

Create an object to pass the IdentityType and other parameters for the listIdentities
method of the AWS.SES client class. To call the listIdentities method, create a promise for 
invoking an Amazon SES service object, passing the parameters object.

Then handle the response in the promise callback. The data returned by the promise contains an 
array of domain identities as specified by the IdentityType parameter.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set region
AWS.config.update({ region: "REGION" });

// Create listIdentities params
var params = { 
  IdentityType: "Domain", 
  MaxItems: 10,
};

// Create the promise and SES service object
var listIDsPromise = new AWS.SES({ apiVersion: "2010-12-01" }) 
  .listIdentities(params) 
  .promise();

// Handle promise's fulfilled/rejected states
listIDsPromise 
  .then(function (data) { 
    console.log(data.Identities); 
  }) 
  .catch(function (err) { 
    console.error(err, err.stack); 
  });

To run the example, type the following at the command line.

Managing Identities 274



AWS SDK for JavaScript Developer Guide for SDK v2

node ses_listidentities.js

This sample code can be found here on GitHub.

Verifying an Email Address Identity

In this example, use a Node.js module to verify email senders to use with Amazon SES. Create 
a Node.js module with the file name ses_verifyemailidentity.js. Configure the SDK as 
previously shown. To access Amazon SES, create an AWS.SES service object.

Create an object to pass the EmailAddress parameter for the verifyEmailIdentity method 
of the AWS.SES client class. To call the verifyEmailIdentity method, create a promise for 
invoking an Amazon SES service object, passing the parameters. Then handle the response in the 
promise callback.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set region
AWS.config.update({ region: "REGION" });

// Create promise and SES service object
var verifyEmailPromise = new AWS.SES({ apiVersion: "2010-12-01" }) 
  .verifyEmailIdentity({ EmailAddress: "ADDRESS@DOMAIN.EXT" }) 
  .promise();

// Handle promise's fulfilled/rejected states
verifyEmailPromise 
  .then(function (data) { 
    console.log("Email verification initiated"); 
  }) 
  .catch(function (err) { 
    console.error(err, err.stack); 
  });

To run the example, type the following at the command line. The domain is added to Amazon SES 
to be verified.

node ses_verifyemailidentity.js

This sample code can be found here on GitHub.

Managing Identities 275

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_listidentities.js
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_verifyemailidentity.js


AWS SDK for JavaScript Developer Guide for SDK v2

Verifying a Domain Identity

In this example, use a Node.js module to verify email domains to use with Amazon SES. Create 
a Node.js module with the file name ses_verifydomainidentity.js. Configure the SDK as 
previously shown.

Create an object to pass the Domain parameter for the verifyDomainIdentity method of the
AWS.SES client class. To call the verifyDomainIdentity method, create a promise for invoking 
an Amazon SES service object, passing the parameters object. Then handle the response in the 
promise callback.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set region
AWS.config.update({ region: "REGION" });

// Create the promise and SES service object
var verifyDomainPromise = new AWS.SES({ apiVersion: "2010-12-01" }) 
  .verifyDomainIdentity({ Domain: "DOMAIN_NAME" }) 
  .promise();

// Handle promise's fulfilled/rejected states
verifyDomainPromise 
  .then(function (data) { 
    console.log("Verification Token: " + data.VerificationToken); 
  }) 
  .catch(function (err) { 
    console.error(err, err.stack); 
  });

To run the example, type the following at the command line. The domain is added to Amazon SES 
to be verified.

node ses_verifydomainidentity.js

This sample code can be found here on GitHub.

Managing Identities 276

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_verifydomainidentity.js


AWS SDK for JavaScript Developer Guide for SDK v2

Deleting Identities

In this example, use a Node.js module to delete email addresses or domains used with Amazon 
SES. Create a Node.js module with the file name ses_deleteidentity.js. Configure the SDK as 
previously shown.

Create an object to pass the Identity parameter for the deleteIdentity method of the
AWS.SES client class. To call the deleteIdentity method, create a request for invoking an 
Amazon SES service object, passing the parameters. Then handle the response in the promise 
callback..

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set region
AWS.config.update({ region: "REGION" });

// Create the promise and SES service object
var deletePromise = new AWS.SES({ apiVersion: "2010-12-01" }) 
  .deleteIdentity({ Identity: "DOMAIN_NAME" }) 
  .promise();

// Handle promise's fulfilled/rejected states
deletePromise 
  .then(function (data) { 
    console.log("Identity Deleted"); 
  }) 
  .catch(function (err) { 
    console.error(err, err.stack); 
  });

To run the example, type the following at the command line.

node ses_deleteidentity.js

This sample code can be found here on GitHub.

Managing Identities 277

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_deleteidentity.js


AWS SDK for JavaScript Developer Guide for SDK v2

Working with Email Templates in Amazon SES

This Node.js code example shows:

• Get a list of all of your email templates.

• Retrieve and update email templates.

• Create and delete email templates.

Amazon SES lets you send personalized email messages using email templates. For details on how 
to create and use email templates in Amazon Simple Email Service, see Sending Personalized Email 
Using the Amazon SES API in the Amazon Simple Email Service Developer Guide.

The Scenario

In this example, you use a series of Node.js modules to work with email templates. The Node.js 
modules use the SDK for JavaScript to create and use email templates using these methods of the
AWS.SES client class:

• listTemplates

• createTemplate

• getTemplate

• deleteTemplate

• updateTemplate

Prerequisite Tasks

To set up and run this example, you must first complete these tasks:

• Install Node.js. For more information about installing Node.js, see the Node.js website.

• Create a shared configurations file with your user credentials. For more information about 
creating a credentials file, see Loading Credentials in Node.js from the Shared Credentials File.

Working with Email Templates 278

https://docs.aws.amazon.com/ses/latest/DeveloperGuide/send-personalized-email-api.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/send-personalized-email-api.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SES.html#listTemplates-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SES.html#createTemplate-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SES.html#getTemplate-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SES.html#deleteTemplate-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SES.html#updateTemplate-property
https://nodejs.org


AWS SDK for JavaScript Developer Guide for SDK v2

Listing Your Email Templates

In this example, use a Node.js module to create an email template to use with Amazon SES. Create 
a Node.js module with the file name ses_listtemplates.js. Configure the SDK as previously 
shown.

Create an object to pass the parameters for the listTemplates method of the AWS.SES client 
class. To call the listTemplates method, create a promise for invoking an Amazon SES service 
object, passing the parameters. Then handle the response in the promise callback.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the promise and SES service object
var templatePromise = new AWS.SES({ apiVersion: "2010-12-01" }) 
  .listTemplates({ MaxItems: ITEMS_COUNT }) 
  .promise();

// Handle promise's fulfilled/rejected states
templatePromise 
  .then(function (data) { 
    console.log(data); 
  }) 
  .catch(function (err) { 
    console.error(err, err.stack); 
  });

To run the example, type the following at the command line. Amazon SES returns the list of 
templates.

node ses_listtemplates.js

This sample code can be found here on GitHub.

Getting an Email Template

In this example, use a Node.js module to get an email template to use with Amazon SES. Create 
a Node.js module with the file name ses_gettemplate.js. Configure the SDK as previously 
shown.

Working with Email Templates 279

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_listtemplates.js


AWS SDK for JavaScript Developer Guide for SDK v2

Create an object to pass the TemplateName parameter for the getTemplate method of the
AWS.SES client class. To call the getTemplate method, create a promise for invoking an Amazon 
SES service object, passing the parameters. Then handle the response in the promise callback.

// Load the AWS SDK for Node.js.
var AWS = require("aws-sdk");
// Set the AWS Region.
AWS.config.update({ region: "REGION" });

// Create the promise and Amazon Simple Email Service (Amazon SES) service object.
var templatePromise = new AWS.SES({ apiVersion: "2010-12-01" }) 
  .getTemplate({ TemplateName: "TEMPLATE_NAME" }) 
  .promise();

// Handle promise's fulfilled/rejected states
templatePromise 
  .then(function (data) { 
    console.log(data.Template.SubjectPart); 
  }) 
  .catch(function (err) { 
    console.error(err, err.stack); 
  });

To run the example, type the following at the command line. Amazon SES returns the template 
details.

node ses_gettemplate.js

This sample code can be found here on GitHub.

Creating an Email Template

In this example, use a Node.js module to create an email template to use with Amazon SES. Create 
a Node.js module with the file name ses_createtemplate.js. Configure the SDK as previously 
shown.

Create an object to pass the parameters for the createTemplate method of the AWS.SES
client class, including TemplateName, HtmlPart, SubjectPart, and TextPart. To call the
createTemplate method, create a promise for invoking an Amazon SES service object, passing 
the parameters. Then handle the response in the promise callback.

Working with Email Templates 280

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_gettemplate.js


AWS SDK for JavaScript Developer Guide for SDK v2

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create createTemplate params
var params = { 
  Template: { 
    TemplateName: "TEMPLATE_NAME" /* required */, 
    HtmlPart: "HTML_CONTENT", 
    SubjectPart: "SUBJECT_LINE", 
    TextPart: "TEXT_CONTENT", 
  },
};

// Create the promise and SES service object
var templatePromise = new AWS.SES({ apiVersion: "2010-12-01" }) 
  .createTemplate(params) 
  .promise();

// Handle promise's fulfilled/rejected states
templatePromise 
  .then(function (data) { 
    console.log(data); 
  }) 
  .catch(function (err) { 
    console.error(err, err.stack); 
  });

To run the example, type the following at the command line. The template is added to Amazon 
SES.

node ses_createtemplate.js

This sample code can be found here on GitHub.

Updating an Email Template

In this example, use a Node.js module to create an email template to use with Amazon SES. Create 
a Node.js module with the file name ses_updatetemplate.js. Configure the SDK as previously 
shown.

Working with Email Templates 281

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_createtemplate.js


AWS SDK for JavaScript Developer Guide for SDK v2

Create an object to pass the Template parameter values you want to update in the template, with 
the required TemplateName parameter passed to the updateTemplate method of the AWS.SES
client class. To call the updateTemplate method, create a promise for invoking an Amazon SES 
service object, passing the parameters. Then handle the response in the promise callback.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create updateTemplate parameters
var params = { 
  Template: { 
    TemplateName: "TEMPLATE_NAME" /* required */, 
    HtmlPart: "HTML_CONTENT", 
    SubjectPart: "SUBJECT_LINE", 
    TextPart: "TEXT_CONTENT", 
  },
};

// Create the promise and SES service object
var templatePromise = new AWS.SES({ apiVersion: "2010-12-01" }) 
  .updateTemplate(params) 
  .promise();

// Handle promise's fulfilled/rejected states
templatePromise 
  .then(function (data) { 
    console.log("Template Updated"); 
  }) 
  .catch(function (err) { 
    console.error(err, err.stack); 
  });

To run the example, type the following at the command line. Amazon SES returns the template 
details.

node ses_updatetemplate.js

This sample code can be found here on GitHub.

Working with Email Templates 282

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_updatetemplate.js


AWS SDK for JavaScript Developer Guide for SDK v2

Deleting an Email Template

In this example, use a Node.js module to create an email template to use with Amazon SES. Create 
a Node.js module with the file name ses_deletetemplate.js. Configure the SDK as previously 
shown.

Create an object to pass the requiredTemplateName parameter to the deleteTemplate method 
of the AWS.SES client class. To call the deleteTemplate method, create a promise for invoking 
an Amazon SES service object, passing the parameters. Then handle the response in the promise 
callback.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the promise and SES service object
var templatePromise = new AWS.SES({ apiVersion: "2010-12-01" }) 
  .deleteTemplate({ TemplateName: "TEMPLATE_NAME" }) 
  .promise();

// Handle promise's fulfilled/rejected states
templatePromise 
  .then(function (data) { 
    console.log("Template Deleted"); 
  }) 
  .catch(function (err) { 
    console.error(err, err.stack); 
  });

To run the example, type the following at the command line. Amazon SES returns the template 
details.

node ses_deletetemplate.js

This sample code can be found here on GitHub.

Working with Email Templates 283

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_deletetemplate.js


AWS SDK for JavaScript Developer Guide for SDK v2

Sending Email Using Amazon SES

This Node.js code example shows:

• Send a text or HTML email.

• Send emails based on an email template.

• Send bulk emails based on an email template.

The Amazon SES API provides two different ways for you to send an email, depending on how 
much control you want over the composition of the email message: formatted and raw. For details, 
see Sending Formatted Email Using the Amazon SES API and Sending Raw Email Using the Amazon 
SES API.

The Scenario

In this example, you use a series of Node.js modules to send email in a variety of ways. The Node.js 
modules use the SDK for JavaScript to create and use email templates using these methods of the
AWS.SES client class:

• sendEmail

• sendTemplatedEmail

• sendBulkTemplatedEmail

Prerequisite Tasks

• Install Node.js. For more information about installing Node.js, see the Node.js website.

• Create a shared configurations file with your user credentials. For more information about 
providing a credentials JSON file, see Loading Credentials in Node.js from the Shared Credentials 
File.

Sending Email Using Amazon SES 284

https://docs.aws.amazon.com/ses/latest/DeveloperGuide/send-email-formatted.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/send-email-raw.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/send-email-raw.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SES.html#sendEmail-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SES.html#sendTemplatedEmail-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SES.html#sendBulkTemplatedEmail-property
https://nodejs.org


AWS SDK for JavaScript Developer Guide for SDK v2

Email Message Sending Requirements

Amazon SES composes an email message and immediately queues it for sending. To send email 
using the SES.sendEmail method, your message must meet the following requirements:

• You must send the message from a verified email address or domain. If you attempt to send 
email using a non-verified address or domain, the operation results in an "Email address not 
verified" error.

• If your account is still in the Amazon SES sandbox, you can only send to verified addresses or 
domains, or to email addresses associated with the Amazon SES Mailbox Simulator. For more 
information, see Verifying Email Addresses and Domains in the Amazon Simple Email Service 
Developer Guide.

• The total size of the message, including attachments, must be smaller than 10 MB.

• The message must include at least one recipient email address. The recipient address can be a 
To: address, a CC: address, or a BCC: address. If a recipient email address is invalid (that is, it is 
not in the format UserName@[SubDomain.]Domain.TopLevelDomain), the entire message is 
rejected, even if the message contains other recipients that are valid.

• The message cannot include more than 50 recipients, across the To:, CC: and BCC: fields. If you 
need to send an email message to a larger audience, you can divide your recipient list into groups 
of 50 or fewer, and then call the sendEmail method several times to send the message to each 
group.

Sending an Email

In this example, use a Node.js module to send email with Amazon SES. Create a Node.js module 
with the file name ses_sendemail.js. Configure the SDK as previously shown.

Create an object to pass the parameter values that define the email to be sent, including sender 
and receiver addresses, subject, email body in plain text and HTML formats, to the sendEmail
method of the AWS.SES client class. To call the sendEmail method, create a promise for invoking 
an Amazon SES service object, passing the parameters. Then handle the response in the promise 
callback.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

Sending Email Using Amazon SES 285

https://docs.aws.amazon.com/ses/latest/DeveloperGuide/verify-addresses-and-domains.html


AWS SDK for JavaScript Developer Guide for SDK v2

// Create sendEmail params
var params = { 
  Destination: { 
    /* required */ 
    CcAddresses: [ 
      "EMAIL_ADDRESS", 
      /* more items */ 
    ], 
    ToAddresses: [ 
      "EMAIL_ADDRESS", 
      /* more items */ 
    ], 
  }, 
  Message: { 
    /* required */ 
    Body: { 
      /* required */ 
      Html: { 
        Charset: "UTF-8", 
        Data: "HTML_FORMAT_BODY", 
      }, 
      Text: { 
        Charset: "UTF-8", 
        Data: "TEXT_FORMAT_BODY", 
      }, 
    }, 
    Subject: { 
      Charset: "UTF-8", 
      Data: "Test email", 
    }, 
  }, 
  Source: "SENDER_EMAIL_ADDRESS" /* required */, 
  ReplyToAddresses: [ 
    "EMAIL_ADDRESS", 
    /* more items */ 
  ],
};

// Create the promise and SES service object
var sendPromise = new AWS.SES({ apiVersion: "2010-12-01" }) 
  .sendEmail(params) 
  .promise();

// Handle promise's fulfilled/rejected states

Sending Email Using Amazon SES 286



AWS SDK for JavaScript Developer Guide for SDK v2

sendPromise 
  .then(function (data) { 
    console.log(data.MessageId); 
  }) 
  .catch(function (err) { 
    console.error(err, err.stack); 
  });

To run the example, type the following at the command line. The email is queued for sending by 
Amazon SES.

node ses_sendemail.js

This sample code can be found here on GitHub.

Sending an Email Using a Template

In this example, use a Node.js module to send email with Amazon SES. Create a Node.js module 
with the file name ses_sendtemplatedemail.js. Configure the SDK as previously shown.

Create an object to pass the parameter values that define the email to be sent, including 
sender and receiver addresses, subject, email body in plain text and HTML formats, to the
sendTemplatedEmail method of the AWS.SES client class. To call the sendTemplatedEmail
method, create a promise for invoking an Amazon SES service object, passing the parameters. Then 
handle the response in the promise callback.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create sendTemplatedEmail params
var params = { 
  Destination: { 
    /* required */ 
    CcAddresses: [ 
      "EMAIL_ADDRESS", 
      /* more CC email addresses */ 
    ], 
    ToAddresses: [ 
      "EMAIL_ADDRESS", 
      /* more To email addresses */ 

Sending Email Using Amazon SES 287

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_sendemail.js


AWS SDK for JavaScript Developer Guide for SDK v2

    ], 
  }, 
  Source: "EMAIL_ADDRESS" /* required */, 
  Template: "TEMPLATE_NAME" /* required */, 
  TemplateData: '{ "REPLACEMENT_TAG_NAME":"REPLACEMENT_VALUE" }' /* required */, 
  ReplyToAddresses: ["EMAIL_ADDRESS"],
};

// Create the promise and SES service object
var sendPromise = new AWS.SES({ apiVersion: "2010-12-01" }) 
  .sendTemplatedEmail(params) 
  .promise();

// Handle promise's fulfilled/rejected states
sendPromise 
  .then(function (data) { 
    console.log(data); 
  }) 
  .catch(function (err) { 
    console.error(err, err.stack); 
  });

To run the example, type the following at the command line. The email is queued for sending by 
Amazon SES.

node ses_sendtemplatedemail.js

This sample code can be found here on GitHub.

Sending Bulk Email Using a Template

In this example, use a Node.js module to send email with Amazon SES. Create a Node.js module 
with the file name ses_sendbulktemplatedemail.js. Configure the SDK as previously shown.

Create an object to pass the parameter values that define the email to be sent, including 
sender and receiver addresses, subject, email body in plain text and HTML formats, 
to the sendBulkTemplatedEmail method of the AWS.SES client class. To call the
sendBulkTemplatedEmail method, create a promise for invoking an Amazon SES service object, 
passing the parameters. Then handle the response in the promise callback.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");

Sending Email Using Amazon SES 288

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_sendtemplatedemail.js


AWS SDK for JavaScript Developer Guide for SDK v2

// Set the region
AWS.config.update({ region: "REGION" });

// Create sendBulkTemplatedEmail params
var params = { 
  Destinations: [ 
    /* required */ 
    { 
      Destination: { 
        /* required */ 
        CcAddresses: [ 
          "EMAIL_ADDRESS", 
          /* more items */ 
        ], 
        ToAddresses: [ 
          "EMAIL_ADDRESS", 
          "EMAIL_ADDRESS", 
          /* more items */ 
        ], 
      }, 
      ReplacementTemplateData: '{ "REPLACEMENT_TAG_NAME":"REPLACEMENT_VALUE" }', 
    }, 
  ], 
  Source: "EMAIL_ADDRESS" /* required */, 
  Template: "TEMPLATE_NAME" /* required */, 
  DefaultTemplateData: '{ "REPLACEMENT_TAG_NAME":"REPLACEMENT_VALUE" }', 
  ReplyToAddresses: ["EMAIL_ADDRESS"],
};

// Create the promise and SES service object
var sendPromise = new AWS.SES({ apiVersion: "2010-12-01" }) 
  .sendBulkTemplatedEmail(params) 
  .promise();

// Handle promise's fulfilled/rejected states
sendPromise 
  .then(function (data) { 
    console.log(data); 
  }) 
  .catch(function (err) { 
    console.log(err, err.stack); 
  });

Sending Email Using Amazon SES 289



AWS SDK for JavaScript Developer Guide for SDK v2

To run the example, type the following at the command line. The email is queued for sending by 
Amazon SES.

node ses_sendbulktemplatedemail.js

This sample code can be found here on GitHub.

Using IP Address Filters for Email Receipt in Amazon SES

This Node.js code example shows:

• Create IP address filters to accept or reject mail that originates from an IP address or range of IP 
addresses.

• List your current IP address filters.

• Delete an IP address filter.

In Amazon SES, a filter is a data structure that consists of a name, an IP address range, and whether 
to allow or block mail from it. IP addresses you want to block or allow are specified as a single IP 
address or a range of IP addresses in Classless Inter-Domain Routing (CIDR) notation. For details on 
how Amazon SES receives email, see Amazon SES Email-Receiving Concepts in the Amazon Simple 
Email Service Developer Guide.

The Scenario

In this example, a series of Node.js modules are used to send email in a variety of ways. The Node.js 
modules use the SDK for JavaScript to create and use email templates using these methods of the
AWS.SES client class:

• createReceiptFilter

• listReceiptFilters

• deleteReceiptFilter

Using IP Address Filters 290

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_sendbulktemplatedemail.js
http://docs.aws.amazon.com/ses/latest/DeveloperGuide/receiving-email-concepts.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SES.html#createReceiptFilter-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SES.html#listReceiptFilters-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SES.html#deleteReceiptFilter-property


AWS SDK for JavaScript Developer Guide for SDK v2

Prerequisite Tasks

To set up and run this example, you must first complete these tasks:

• Install Node.js. For more information about installing Node.js, see the Node.js website.

• Create a shared configurations file with your user credentials. For more information about 
providing a shared credentials file, see Loading Credentials in Node.js from the Shared 
Credentials File.

Configuring the SDK

Configure the SDK for JavaScript by creating a global configuration object then setting the Region 
for your code. In this example, the Region is set to us-west-2.

// Load the SDK for JavaScript
var AWS = require('aws-sdk');
// Set the Region  
AWS.config.update({region: 'us-west-2'});

Creating an IP Address Filter

In this example, use a Node.js module to send email with Amazon SES. Create a Node.js module 
with the file name ses_createreceiptfilter.js. Configure the SDK as previously shown.

Create an object to pass the parameter values that define the IP filter, including the filter name, 
an IP address or range of addresses to filter, and whether to allow or block email traffic from the 
filtered addresses. To call the createReceiptFilter method, create a promise for invoking an 
Amazon SES service object, passing the parameters. Then handle the response in the promise 
callback.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create createReceiptFilter params
var params = { 
  Filter: { 
    IpFilter: { 
      Cidr: "IP_ADDRESS_OR_RANGE", 

Using IP Address Filters 291

https://nodejs.org


AWS SDK for JavaScript Developer Guide for SDK v2

      Policy: "Allow" | "Block", 
    }, 
    Name: "NAME", 
  },
};

// Create the promise and SES service object
var sendPromise = new AWS.SES({ apiVersion: "2010-12-01" }) 
  .createReceiptFilter(params) 
  .promise();

// Handle promise's fulfilled/rejected states
sendPromise 
  .then(function (data) { 
    console.log(data); 
  }) 
  .catch(function (err) { 
    console.error(err, err.stack); 
  });

To run the example, type the following at the command line. The filter is created in Amazon SES.

node ses_createreceiptfilter.js

This sample code can be found here on GitHub.

Listing Your IP Address Filters

In this example, use a Node.js module to send email with Amazon SES. Create a Node.js module 
with the file name ses_listreceiptfilters.js. Configure the SDK as previously shown.

Create an empty parameters object. To call the listReceiptFilters method, create a promise 
for invoking an Amazon SES service object, passing the parameters. Then handle the response in 
the promise callback.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the promise and SES service object
var sendPromise = new AWS.SES({ apiVersion: "2010-12-01" }) 

Using IP Address Filters 292

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_createreceiptfilter.js


AWS SDK for JavaScript Developer Guide for SDK v2

  .listReceiptFilters({}) 
  .promise();

// Handle promise's fulfilled/rejected states
sendPromise 
  .then(function (data) { 
    console.log(data.Filters); 
  }) 
  .catch(function (err) { 
    console.error(err, err.stack); 
  });

To run the example, type the following at the command line. Amazon SES returns the filter list.

node ses_listreceiptfilters.js

This sample code can be found here on GitHub.

Deleting an IP Address Filter

In this example, use a Node.js module to send email with Amazon SES. Create a Node.js module 
with the file name ses_deletereceiptfilter.js. Configure the SDK as previously shown.

Create an object to pass the name of the IP filter to delete. To call the deleteReceiptFilter
method, create a promise for invoking an Amazon SES service object, passing the parameters. Then 
handle the response in the promise callback.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the promise and SES service object
var sendPromise = new AWS.SES({ apiVersion: "2010-12-01" }) 
  .deleteReceiptFilter({ FilterName: "NAME" }) 
  .promise();

// Handle promise's fulfilled/rejected states
sendPromise 
  .then(function (data) { 
    console.log("IP Filter deleted"); 
  }) 

Using IP Address Filters 293

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_listreceiptfilters.js


AWS SDK for JavaScript Developer Guide for SDK v2

  .catch(function (err) { 
    console.error(err, err.stack); 
  });

To run the example, type the following at the command line. The filter is deleted from Amazon 
SES.

node ses_deletereceiptfilter.js

This sample code can be found here on GitHub.

Using Receipt Rules in Amazon SES

This Node.js code example shows:

• Create and delete receipt rules.

• Organize receipt rules into receipt rule sets.

Receipt rules in Amazon SES specify what to do with email received for email addresses or domains 
you own. A receipt rule contains a condition and an ordered list of actions. If the recipient of an 
incoming email matches a recipient specified in the conditions for the receipt rule, Amazon SES 
performs the actions that the receipt rule specifies.

To use Amazon SES as your email receiver, you must have at least one active receipt rule set. A 
receipt rule set is an ordered collection of receipt rules that specify what Amazon SES should do 
with mail it receives across your verified domains. For more information, see Creating Receipt Rules 
for Amazon SES Email Receiving and Creating a Receipt Rule Set for Amazon SES Email Receiving in 
the Amazon Simple Email Service Developer Guide.

The Scenario

In this example, a series of Node.js modules are used to send email in a variety of ways. The Node.js 
modules use the SDK for JavaScript to create and use email templates using these methods of the
AWS.SES client class:

Using Receipt Rules 294

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_deletereceiptfilter.js
Amazon%20Simple%20Email%20Service%20Developer%20Guidereceiving-email-receipt-rules.html
Amazon%20Simple%20Email%20Service%20Developer%20Guidereceiving-email-receipt-rules.html
Amazon%20Simple%20Email%20Service%20Developer%20Guidereceiving-email-receipt-rule-set.html


AWS SDK for JavaScript Developer Guide for SDK v2

• createReceiptRule

• deleteReceiptRule

• createReceiptRuleSet

• deleteReceiptRuleSet

Prerequisite Tasks

To set up and run this example, you must first complete these tasks:

• Install Node.js. For more information about installing Node.js, see the Node.js website.

• Create a shared configurations file with your user credentials. For more information about 
providing a credentials JSON file, see Loading Credentials in Node.js from the Shared Credentials 
File.

Creating an Amazon S3 Receipt Rule

Each receipt rule for Amazon SES contains an ordered list of actions. This example creates a receipt 
rule with an Amazon S3 action, which delivers the mail message to an Amazon S3 bucket. For 
details on receipt rule actions, see Action Options  in the Amazon Simple Email Service Developer 
Guide.

For Amazon SES to write email to an Amazon S3 bucket, create a bucket policy that gives
PutObject permission to Amazon SES. For information about creating this bucket policy, see Give 
Amazon SES Permission to Write to Your Amazon S3 Bucket  in the Amazon Simple Email Service 
Developer Guide.

In this example, use a Node.js module to create a receipt rule in Amazon SES to save 
received messages in an Amazon S3 bucket. Create a Node.js module with the file name
ses_createreceiptrule.js. Configure the SDK as previously shown.

Create a parameters object to pass the values needed to create for the receipt rule set. To call the
createReceiptRuleSet method, create a promise for invoking an Amazon SES service object, 
passing the parameters. Then handle the response in the promise callback.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

Using Receipt Rules 295

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SES.html#createReceiptRule-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SES.html#deleteReceiptRule-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SES.html#createReceiptRuleSet-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SES.html#deleteReceiptRuleSet-property
https://nodejs.org
Amazon%20Simple%20Email%20Service%20Developer%20Guidereceiving-email-action.html
Amazon%20Simple%20Email%20Service%20Developer%20Guidereceiving-email-permissions.html%23receiving-email-permissions-s3.html
Amazon%20Simple%20Email%20Service%20Developer%20Guidereceiving-email-permissions.html%23receiving-email-permissions-s3.html


AWS SDK for JavaScript Developer Guide for SDK v2

// Create createReceiptRule params
var params = { 
  Rule: { 
    Actions: [ 
      { 
        S3Action: { 
          BucketName: "S3_BUCKET_NAME", 
          ObjectKeyPrefix: "email", 
        }, 
      }, 
    ], 
    Recipients: [ 
      "DOMAIN | EMAIL_ADDRESS", 
      /* more items */ 
    ], 
    Enabled: true | false, 
    Name: "RULE_NAME", 
    ScanEnabled: true | false, 
    TlsPolicy: "Optional", 
  }, 
  RuleSetName: "RULE_SET_NAME",
};

// Create the promise and SES service object
var newRulePromise = new AWS.SES({ apiVersion: "2010-12-01" }) 
  .createReceiptRule(params) 
  .promise();

// Handle promise's fulfilled/rejected states
newRulePromise 
  .then(function (data) { 
    console.log("Rule created"); 
  }) 
  .catch(function (err) { 
    console.error(err, err.stack); 
  });

To run the example, type the following at the command line. Amazon SES creates the receipt rule.

node ses_createreceiptrule.js

This sample code can be found here on GitHub.

Using Receipt Rules 296

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_createreceiptrule.js


AWS SDK for JavaScript Developer Guide for SDK v2

Deleting a Receipt Rule

In this example, use a Node.js module to send email with Amazon SES. Create a Node.js module 
with the file name ses_deletereceiptrule.js. Configure the SDK as previously shown.

Create a parameters object to pass the name for the receipt rule to delete. To call the
deleteReceiptRule method, create a promise for invoking an Amazon SES service object, 
passing the parameters. Then handle the response in the promise callback.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create deleteReceiptRule params
var params = { 
  RuleName: "RULE_NAME" /* required */, 
  RuleSetName: "RULE_SET_NAME" /* required */,
};

// Create the promise and SES service object
var newRulePromise = new AWS.SES({ apiVersion: "2010-12-01" }) 
  .deleteReceiptRule(params) 
  .promise();

// Handle promise's fulfilled/rejected states
newRulePromise 
  .then(function (data) { 
    console.log("Receipt Rule Deleted"); 
  }) 
  .catch(function (err) { 
    console.error(err, err.stack); 
  });

To run the example, type the following at the command line. Amazon SES creates the receipt rule 
set list.

node ses_deletereceiptrule.js

This sample code can be found here on GitHub.

Using Receipt Rules 297

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_deletereceiptrule.js


AWS SDK for JavaScript Developer Guide for SDK v2

Creating a Receipt Rule Set

In this example, use a Node.js module to send email with Amazon SES. Create a Node.js module 
with the file name ses_createreceiptruleset.js. Configure the SDK as previously shown.

Create a parameters object to pass the name for the new receipt rule set. To call the
createReceiptRuleSet method, create a promise for invoking an Amazon SES service object, 
passing the parameters. Then handle the response in the promise callback.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the promise and SES service object
var newRulePromise = new AWS.SES({ apiVersion: "2010-12-01" }) 
  .createReceiptRuleSet({ RuleSetName: "NAME" }) 
  .promise();

// Handle promise's fulfilled/rejected states
newRulePromise 
  .then(function (data) { 
    console.log(data); 
  }) 
  .catch(function (err) { 
    console.error(err, err.stack); 
  });

To run the example, type the following at the command line. Amazon SES creates the receipt rule 
set list.

node ses_createreceiptruleset.js

This sample code can be found here on GitHub.

Deleting a Receipt Rule Set

In this example, use a Node.js module to send email with Amazon SES. Create a Node.js module 
with the file name ses_deletereceiptruleset.js. Configure the SDK as previously shown.

Using Receipt Rules 298

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_createreceiptruleset.js


AWS SDK for JavaScript Developer Guide for SDK v2

Create an object to pass the name for the receipt rule set to delete. To call the
deleeReceiptRuleSet method, create a promise for invoking an Amazon SES service object, 
passing the parameters. Then handle the response in the promise callback.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the promise and SES service object
var newRulePromise = new AWS.SES({ apiVersion: "2010-12-01" }) 
  .deleteReceiptRuleSet({ RuleSetName: "NAME" }) 
  .promise();

// Handle promise's fulfilled/rejected states
newRulePromise 
  .then(function (data) { 
    console.log(data); 
  }) 
  .catch(function (err) { 
    console.error(err, err.stack); 
  });

To run the example, type the following at the command line. Amazon SES creates the receipt rule 
set list.

node ses_deletereceiptruleset.js

This sample code can be found here on GitHub.

Amazon Simple Notification Service Examples

Amazon Simple Notification Service (Amazon SNS) is a web service that coordinates and manages 
the delivery or sending of messages to subscribing endpoints or clients.

In Amazon SNS, there are two types of clients—publishers and subscribers—also referred to as 
producers and consumers.

Amazon SNS Examples 299

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_deletereceiptruleset.js


AWS SDK for JavaScript Developer Guide for SDK v2

Publishers communicate asynchronously with subscribers by producing and sending a message to 
a topic, which is a logical access point and communication channel. Subscribers (web servers, email 
addresses, Amazon SQS queues, Lambda functions) consume or receive the message or notification 
over one of the supported protocols (Amazon SQS, HTTP/S, email, SMS, AWS Lambda) when they 
are subscribed to the topic.

The JavaScript API for Amazon SNS is exposed through the Class: AWS.SNS.

Topics

• Managing Topics in Amazon SNS

• Publishing Messages in Amazon SNS

• Managing Subscriptions in Amazon SNS

• Sending SMS Messages with Amazon SNS

Managing Topics in Amazon SNS

This Node.js code example shows:

• How to create topics in Amazon SNS to which you can publish notifications.

• How to delete topics created in Amazon SNS.

• How to get a list of available topics.

Managing Topics 300

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SNS.html


AWS SDK for JavaScript Developer Guide for SDK v2

• How to get and set topic attributes.

The Scenario

In this example, you use a series of Node.js modules to create, list, and delete Amazon SNS topics, 
and to handle topic attributes. The Node.js modules use the SDK for JavaScript to manage topics 
using these methods of the AWS.SNS client class:

• createTopic

• listTopics

• deleteTopic

• getTopicAttributes

• setTopicAttributes

Prerequisite Tasks

To set up and run this example, you must first complete these tasks:

• Install Node.js. For more information about installing Node.js, see the Node.js website.

• Create a shared configurations file with your user credentials. For more information about 
providing a credentials JSON file, see Loading Credentials in Node.js from the Shared Credentials 
File.

Creating a Topic

In this example, use a Node.js module to create an Amazon SNS topic. Create a Node.js module 
with the file name sns_createtopic.js. Configure the SDK as previously shown.

Create an object to pass the Name for the new topic to the createTopic method of the AWS.SNS
client class. To call the createTopic method, create a promise for invoking an Amazon SNS 
service object, passing the parameters object. Then handle the response in the promise callback. 
The data returned by the promise contains the ARN of the topic.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set region

Managing Topics 301

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SNS.html#createTopic-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SNS.html#listTopics-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SNS.html#deleteTopic-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SNS.html#getTopicAttributes-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SNS.html#setTopicAttributes-property
http://nodejs.org


AWS SDK for JavaScript Developer Guide for SDK v2

AWS.config.update({ region: "REGION" });

// Create promise and SNS service object
var createTopicPromise = new AWS.SNS({ apiVersion: "2010-03-31" }) 
  .createTopic({ Name: "TOPIC_NAME" }) 
  .promise();

// Handle promise's fulfilled/rejected states
createTopicPromise 
  .then(function (data) { 
    console.log("Topic ARN is " + data.TopicArn); 
  }) 
  .catch(function (err) { 
    console.error(err, err.stack); 
  });

To run the example, type the following at the command line.

node sns_createtopic.js

This sample code can be found here on GitHub.

Listing Your Topics

In this example, use a Node.js module to list all Amazon SNS topics. Create a Node.js module with 
the file name sns_listtopics.js. Configure the SDK as previously shown.

Create an empty object to pass to the listTopics method of the AWS.SNS client class. To call 
the listTopics method, create a promise for invoking an Amazon SNS service object, passing the 
parameters object. Then handle the response in the promise callback. The data returned by the 
promise contains an array of your topic ARNs.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set region
AWS.config.update({ region: "REGION" });

// Create promise and SNS service object
var listTopicsPromise = new AWS.SNS({ apiVersion: "2010-03-31" }) 
  .listTopics({}) 
  .promise();

Managing Topics 302

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sns/sns_createtopic.js


AWS SDK for JavaScript Developer Guide for SDK v2

// Handle promise's fulfilled/rejected states
listTopicsPromise 
  .then(function (data) { 
    console.log(data.Topics); 
  }) 
  .catch(function (err) { 
    console.error(err, err.stack); 
  });

To run the example, type the following at the command line.

node sns_listtopics.js

This sample code can be found here on GitHub.

Deleting a Topic

In this example, use a Node.js module to delete an Amazon SNS topic. Create a Node.js module 
with the file name sns_deletetopic.js. Configure the SDK as previously shown.

Create an object containing the TopicArn of the topic to delete to pass to the deleteTopic
method of the AWS.SNS client class. To call the deleteTopic method, create a promise for 
invoking an Amazon SNS service object, passing the parameters object. Then handle the response
in the promise callback.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set region
AWS.config.update({ region: "REGION" });

// Create promise and SNS service object
var deleteTopicPromise = new AWS.SNS({ apiVersion: "2010-03-31" }) 
  .deleteTopic({ TopicArn: "TOPIC_ARN" }) 
  .promise();

// Handle promise's fulfilled/rejected states
deleteTopicPromise 
  .then(function (data) { 
    console.log("Topic Deleted"); 
  }) 
  .catch(function (err) { 
    console.error(err, err.stack); 

Managing Topics 303

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sns/sns_listtopics.js


AWS SDK for JavaScript Developer Guide for SDK v2

  });

To run the example, type the following at the command line.

node sns_deletetopic.js

This sample code can be found here on GitHub.

Getting Topic Attributes

In this example, use a Node.js module to retrieve attributes of an Amazon SNS topic. Create 
a Node.js module with the file name sns_gettopicattributes.js. Configure the SDK as 
previously shown.

Create an object containing the TopicArn of a topic to delete to pass to the
getTopicAttributes method of the AWS.SNS client class. To call the getTopicAttributes
method, create a promise for invoking an Amazon SNS service object, passing the parameters 
object. Then handle the response in the promise callback.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set region
AWS.config.update({ region: "REGION" });

// Create promise and SNS service object
var getTopicAttribsPromise = new AWS.SNS({ apiVersion: "2010-03-31" }) 
  .getTopicAttributes({ TopicArn: "TOPIC_ARN" }) 
  .promise();

// Handle promise's fulfilled/rejected states
getTopicAttribsPromise 
  .then(function (data) { 
    console.log(data); 
  }) 
  .catch(function (err) { 
    console.error(err, err.stack); 
  });

To run the example, type the following at the command line.

node sns_gettopicattributes.js

Managing Topics 304

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sns/sns_deletetopic.js


AWS SDK for JavaScript Developer Guide for SDK v2

This sample code can be found here on GitHub.

Setting Topic Attributes

In this example, use a Node.js module to set the mutable attributes of an Amazon SNS topic. 
Create a Node.js module with the file name sns_settopicattributes.js. Configure the SDK as 
previously shown.

Create an object containing the parameters for the attribute update, including the TopicArn of 
the topic whose attributes you want to set, the name of the attribute to set, and the new value 
for that attribute. You can set only the Policy, DisplayName, and DeliveryPolicy attributes. 
Pass the parameters to the setTopicAttributes method of the AWS.SNS client class. To call 
the setTopicAttributes method, create a promise for invoking an Amazon SNS service object, 
passing the parameters object. Then handle the response in the promise callback.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set region
AWS.config.update({ region: "REGION" });

// Create setTopicAttributes parameters
var params = { 
  AttributeName: "ATTRIBUTE_NAME" /* required */, 
  TopicArn: "TOPIC_ARN" /* required */, 
  AttributeValue: "NEW_ATTRIBUTE_VALUE",
};

// Create promise and SNS service object
var setTopicAttribsPromise = new AWS.SNS({ apiVersion: "2010-03-31" }) 
  .setTopicAttributes(params) 
  .promise();

// Handle promise's fulfilled/rejected states
setTopicAttribsPromise 
  .then(function (data) { 
    console.log(data); 
  }) 
  .catch(function (err) { 
    console.error(err, err.stack); 
  });

To run the example, type the following at the command line.

Managing Topics 305

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sns/sns_gettopicattributes.js


AWS SDK for JavaScript Developer Guide for SDK v2

node sns_settopicattributes.js

This sample code can be found here on GitHub.

Publishing Messages in Amazon SNS

This Node.js code example shows:

• How to publish messages to an Amazon SNS topic.

The Scenario

In this example, you use a series of Node.js modules to publish messages from Amazon SNS to 
topic endpoints, emails, or phone numbers. The Node.js modules use the SDK for JavaScript to 
send messages using this method of the AWS.SNS client class:

• publish

Prerequisite Tasks

To set up and run this example, you must first complete these tasks:

• Install Node.js. For more information about installing Node.js, see the Node.js website.

• Create a shared configurations file with your user credentials. For more information about 
providing a credentials JSON file, see Loading Credentials in Node.js from the Shared Credentials 
File.

Publishing a Message to an Amazon SNS Topic

In this example, use a Node.js module to publish a message to an Amazon SNS topic. Create a 
Node.js module with the file name sns_publishtotopic.js. Configure the SDK as previously 
shown.

Publishing Messages to a Topic 306

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sns/sns_settopicattributes.js
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SNS.html#publish-property
http://nodejs.org


AWS SDK for JavaScript Developer Guide for SDK v2

Create an object containing the parameters for publishing a message, including the message 
text and the ARN of the Amazon SNS topic. For details on available SMS attributes, see
SetSMSAttributes.

Pass the parameters to the publish method of the AWS.SNS client class. Create a promise for 
invoking an Amazon SNS service object, passing the parameters object. Then handle the response 
in the promise callback.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set region
AWS.config.update({ region: "REGION" });

// Create publish parameters
var params = { 
  Message: "MESSAGE_TEXT" /* required */, 
  TopicArn: "TOPIC_ARN",
};

// Create promise and SNS service object
var publishTextPromise = new AWS.SNS({ apiVersion: "2010-03-31" }) 
  .publish(params) 
  .promise();

// Handle promise's fulfilled/rejected states
publishTextPromise 
  .then(function (data) { 
    console.log( 
      `Message ${params.Message} sent to the topic ${params.TopicArn}` 
    ); 
    console.log("MessageID is " + data.MessageId); 
  }) 
  .catch(function (err) { 
    console.error(err, err.stack); 
  });

To run the example, type the following at the command line.

node sns_publishtotopic.js

This sample code can be found here on GitHub.

Publishing Messages to a Topic 307

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SNS.html#setSMSAttributes-property
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sns/sns_publishtotopic.js


AWS SDK for JavaScript Developer Guide for SDK v2

Managing Subscriptions in Amazon SNS

This Node.js code example shows:

• How to list all subscriptions to an Amazon SNS topic.

• How to subscribe an email address, an application endpoint, or an AWS Lambda function to an 
Amazon SNS topic.

• How to unsubscribe from Amazon SNS topics.

The Scenario

In this example, you use a series of Node.js modules to publish notification messages to Amazon 
SNS topics. The Node.js modules use the SDK for JavaScript to manage topics using these methods 
of the AWS.SNS client class:

• subscribe

• confirmSubscription

• listSubscriptionsByTopic

• unsubscribe

Prerequisite Tasks

To set up and run this example, you must first complete these tasks:

• Install Node.js. For more information about installing Node.js, see the Node.js website.

• Create a shared configurations file with your user credentials. For more information about 
providing a credentials JSON file, see Loading Credentials in Node.js from the Shared Credentials 
File.

Managing Subscriptions 308

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SNS.html#subscribe-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SNS.html#confirmSubscription-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SNS.html#listSubscriptionsByTopic-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SNS.html#unsubscribe-property
http://nodejs.org


AWS SDK for JavaScript Developer Guide for SDK v2

Listing Subscriptions to a Topic

In this example, use a Node.js module to list all subscriptions to an Amazon SNS topic. Create 
a Node.js module with the file name sns_listsubscriptions.js. Configure the SDK as 
previously shown.

Create an object containing the TopicArn parameter for the topic whose subscriptions you want 
to list. Pass the parameters to the listSubscriptionsByTopic method of the AWS.SNS client 
class. To call the listSubscriptionsByTopic method, create a promise for invoking an Amazon 
SNS service object, passing the parameters object. Then handle the response in the promise 
callback.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set region
AWS.config.update({ region: "REGION" });

const params = { 
  TopicArn: "TOPIC_ARN",
};

// Create promise and SNS service object
var subslistPromise = new AWS.SNS({ apiVersion: "2010-03-31" }) 
  .listSubscriptionsByTopic(params) 
  .promise();

// Handle promise's fulfilled/rejected states
subslistPromise 
  .then(function (data) { 
    console.log(data); 
  }) 
  .catch(function (err) { 
    console.error(err, err.stack); 
  });

To run the example, type the following at the command line.

node sns_listsubscriptions.js

This sample code can be found here on GitHub.

Managing Subscriptions 309

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sns/sns_listsubscriptions.js


AWS SDK for JavaScript Developer Guide for SDK v2

Subscribing an Email Address to a Topic

In this example, use a Node.js module to subscribe an email address so that it receives SMTP 
email messages from an Amazon SNS topic. Create a Node.js module with the file name
sns_subscribeemail.js. Configure the SDK as previously shown.

Create an object containing the Protocol parameter to specify the email protocol, the
TopicArn for the topic to subscribe to, and an email address as the message Endpoint. Pass the 
parameters to the subscribe method of the AWS.SNS client class. You can use the subscribe
method to subscribe several different endpoints to an Amazon SNS topic, depending on the values 
used for parameters passed, as other examples in this topic will show.

To call the subscribe method, create a promise for invoking an Amazon SNS service object, 
passing the parameters object. Then handle the response in the promise callback.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set region
AWS.config.update({ region: "REGION" });

// Create subscribe/email parameters
var params = { 
  Protocol: "EMAIL" /* required */, 
  TopicArn: "TOPIC_ARN" /* required */, 
  Endpoint: "EMAIL_ADDRESS",
};

// Create promise and SNS service object
var subscribePromise = new AWS.SNS({ apiVersion: "2010-03-31" }) 
  .subscribe(params) 
  .promise();

// Handle promise's fulfilled/rejected states
subscribePromise 
  .then(function (data) { 
    console.log("Subscription ARN is " + data.SubscriptionArn); 
  }) 
  .catch(function (err) { 
    console.error(err, err.stack); 
  });

To run the example, type the following at the command line.

Managing Subscriptions 310



AWS SDK for JavaScript Developer Guide for SDK v2

node sns_subscribeemail.js

This sample code can be found here on GitHub.

Subscribing an Application Endpoint to a Topic

In this example, use a Node.js module to subscribe a mobile application endpoint so it 
receives notifications from an Amazon SNS topic. Create a Node.js module with the file name
sns_subscribeapp.js. Configure the SDK as previously shown.

Create an object containing the Protocol parameter to specify the application protocol, the
TopicArn for the topic to subscribe to, and the ARN of a mobile application endpoint for the
Endpoint parameter. Pass the parameters to the subscribe method of the AWS.SNS client class.

To call the subscribe method, create a promise for invoking an Amazon SNS service object, 
passing the parameters object. Then handle the response in the promise callback.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set region
AWS.config.update({ region: "REGION" });

// Create subscribe/email parameters
var params = { 
  Protocol: "application" /* required */, 
  TopicArn: "TOPIC_ARN" /* required */, 
  Endpoint: "MOBILE_ENDPOINT_ARN",
};

// Create promise and SNS service object
var subscribePromise = new AWS.SNS({ apiVersion: "2010-03-31" }) 
  .subscribe(params) 
  .promise();

// Handle promise's fulfilled/rejected states
subscribePromise 
  .then(function (data) { 
    console.log("Subscription ARN is " + data.SubscriptionArn); 
  }) 
  .catch(function (err) { 
    console.error(err, err.stack); 

Managing Subscriptions 311

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sns/sns_subscribeemail.js


AWS SDK for JavaScript Developer Guide for SDK v2

  });

To run the example, type the following at the command line.

node sns_subscribeapp.js

This sample code can be found here on GitHub.

Subscribing a Lambda Function to a Topic

In this example, use a Node.js module to subscribe an AWS Lambda function so it receives 
notifications from an Amazon SNS topic. Create a Node.js module with the file name
sns_subscribelambda.js. Configure the SDK as previously shown.

Create an object containing the Protocol parameter, specifying the lambda protocol, the
TopicArn for the topic to subscribe to, and the ARN of an AWS Lambda function as the Endpoint
parameter. Pass the parameters to the subscribe method of the AWS.SNS client class.

To call the subscribe method, create a promise for invoking an Amazon SNS service object, 
passing the parameters object. Then handle the response in the promise callback.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set region
AWS.config.update({ region: "REGION" });

// Create subscribe/email parameters
var params = { 
  Protocol: "lambda" /* required */, 
  TopicArn: "TOPIC_ARN" /* required */, 
  Endpoint: "LAMBDA_FUNCTION_ARN",
};

// Create promise and SNS service object
var subscribePromise = new AWS.SNS({ apiVersion: "2010-03-31" }) 
  .subscribe(params) 
  .promise();

// Handle promise's fulfilled/rejected states
subscribePromise 
  .then(function (data) { 

Managing Subscriptions 312

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sns/sns_subscribeapp.js


AWS SDK for JavaScript Developer Guide for SDK v2

    console.log("Subscription ARN is " + data.SubscriptionArn); 
  }) 
  .catch(function (err) { 
    console.error(err, err.stack); 
  });

To run the example, type the following at the command line.

node sns_subscribelambda.js

This sample code can be found here on GitHub.

Unsubscribing from a Topic

In this example, use a Node.js module to unsubscribe an Amazon SNS topic subscription. Create 
a Node.js module with the file name sns_unsubscribe.js. Configure the SDK as previously 
shown.

Create an object containing the SubscriptionArn parameter, specifying the ARN of the 
subscription to unsubscribe. Pass the parameters to the unsubscribe method of the AWS.SNS
client class.

To call the unsubscribe method, create a promise for invoking an Amazon SNS service object, 
passing the parameters object. Then handle the response in the promise callback.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set region
AWS.config.update({ region: "REGION" });

// Create promise and SNS service object
var subscribePromise = new AWS.SNS({ apiVersion: "2010-03-31" }) 
  .unsubscribe({ SubscriptionArn: TOPIC_SUBSCRIPTION_ARN }) 
  .promise();

// Handle promise's fulfilled/rejected states
subscribePromise 
  .then(function (data) { 
    console.log(data); 
  }) 
  .catch(function (err) { 
    console.error(err, err.stack); 

Managing Subscriptions 313

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sns/sns_subscribelambda.js


AWS SDK for JavaScript Developer Guide for SDK v2

  });

To run the example, type the following at the command line.

node sns_unsubscribe.js

This sample code can be found here on GitHub.

Sending SMS Messages with Amazon SNS

This Node.js code example shows:

• How to get and set SMS messaging preferences for Amazon SNS.

• How to check a phone number to see if it has opted out of receiving SMS messages.

• How to get a list of phone numbers that have opted out of receiving SMS messages.

• How to send an SMS message.

The Scenario

You can use Amazon SNS to send text messages, or SMS messages, to SMS-enabled devices. You 
can send a message directly to a phone number, or you can send a message to multiple phone 
numbers at once by subscribing those phone numbers to a topic and sending your message to the 
topic.

In this example, you use a series of Node.js modules to publish SMS text messages from Amazon 
SNS to SMS-enabled devices. The Node.js modules use the SDK for JavaScript to publish SMS 
messages using these methods of the AWS.SNS client class:

• getSMSAttributes

• setSMSAttributes

• checkIfPhoneNumberIsOptedOut

• listPhoneNumbersOptedOut

• publish

Sending SMS Messages 314

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sns/sns_unsubscribe.js
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SNS.html#getSMSAttributes-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SNS.html#setSMSAttributes-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SNS.html#checkIfPhoneNumberIsOptedOut-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SNS.html#listPhoneNumbersOptedOut-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SNS.html#publish-property


AWS SDK for JavaScript Developer Guide for SDK v2

Prerequisite Tasks

To set up and run this example, you must first complete these tasks:

• Install Node.js. For more information about installing Node.js, see the Node.js website.

• Create a shared configurations file with your user credentials. For more information about 
providing a credentials JSON file, see Loading Credentials in Node.js from the Shared Credentials 
File.

Getting SMS Attributes

Use Amazon SNS to specify preferences for SMS messaging, such as how your deliveries are 
optimized (for cost or for reliable delivery), your monthly spending limit, how message deliveries 
are logged, and whether to subscribe to daily SMS usage reports. These preferences are retrieved 
and set as SMS attributes for Amazon SNS.

In this example, use a Node.js module to get the current SMS attributes in Amazon SNS. Create a 
Node.js module with the file name sns_getsmstype.js. Configure the SDK as previously shown. 
Create an object containing the parameters for getting SMS attributes, including the names of the 
individual attributes to get. For details on available SMS attributes, see SetSMSAttributes in the 
Amazon Simple Notification Service API Reference.

This example gets the DefaultSMSType attribute, which controls whether SMS messages 
are sent as Promotional, which optimizes message delivery to incur the lowest cost, or as
Transactional, which optimizes message delivery to achieve the highest reliability. Pass 
the parameters to the setTopicAttributes method of the AWS.SNS client class. To call the
getSMSAttributes method, create a promise for invoking an Amazon SNS service object, passing 
the parameters object. Then handle the response in the promise callback.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set region
AWS.config.update({ region: "REGION" });

// Create SMS Attribute parameter you want to get
var params = { 
  attributes: [ 
    "DefaultSMSType", 
    "ATTRIBUTE_NAME", 
    /* more items */ 

Sending SMS Messages 315

http://nodejs.org
https://docs.aws.amazon.com/sns/latest/api/API_SetSMSAttributes.html


AWS SDK for JavaScript Developer Guide for SDK v2

  ],
};

// Create promise and SNS service object
var getSMSTypePromise = new AWS.SNS({ apiVersion: "2010-03-31" }) 
  .getSMSAttributes(params) 
  .promise();

// Handle promise's fulfilled/rejected states
getSMSTypePromise 
  .then(function (data) { 
    console.log(data); 
  }) 
  .catch(function (err) { 
    console.error(err, err.stack); 
  });

To run the example, type the following at the command line.

node sns_getsmstype.js

This sample code can be found here on GitHub.

Setting SMS Attributes

In this example, use a Node.js module to get the current SMS attributes in Amazon SNS. Create a 
Node.js module with the file name sns_setsmstype.js. Configure the SDK as previously shown. 
Create an object containing the parameters for setting SMS attributes, including the names of the 
individual attributes to set and the values to set for each. For details on available SMS attributes, 
see  SetSMSAttributes in the Amazon Simple Notification Service API Reference.

This example sets the DefaultSMSType attribute to Transactional, which optimizes message 
delivery to achieve the highest reliability. Pass the parameters to the setTopicAttributes
method of the AWS.SNS client class. To call the getSMSAttributes method, create a promise for 
invoking an Amazon SNS service object, passing the parameters object. Then handle the response
in the promise callback.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set region
AWS.config.update({ region: "REGION" });

Sending SMS Messages 316

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sns/sns_getsmstype.js
https://docs.aws.amazon.com/sns/latest/api/API_SetSMSAttributes.html


AWS SDK for JavaScript Developer Guide for SDK v2

// Create SMS Attribute parameters
var params = { 
  attributes: { 
    /* required */ 
    DefaultSMSType: "Transactional" /* highest reliability */, 
    //'DefaultSMSType': 'Promotional' /* lowest cost */ 
  },
};

// Create promise and SNS service object
var setSMSTypePromise = new AWS.SNS({ apiVersion: "2010-03-31" }) 
  .setSMSAttributes(params) 
  .promise();

// Handle promise's fulfilled/rejected states
setSMSTypePromise 
  .then(function (data) { 
    console.log(data); 
  }) 
  .catch(function (err) { 
    console.error(err, err.stack); 
  });

To run the example, type the following at the command line.

node sns_setsmstype.js

This sample code can be found here on GitHub.

Checking If a Phone Number Has Opted Out

In this example, use a Node.js module to check a phone number to see if it has 
opted out from receiving SMS messages. Create a Node.js module with the file name
sns_checkphoneoptout.js. Configure the SDK as previously shown. Create an object containing 
the phone number to check as a parameter.

This example sets the PhoneNumber parameter to specify the phone number to check. Pass the 
object to the checkIfPhoneNumberIsOptedOut method of the AWS.SNS client class. To call 
the checkIfPhoneNumberIsOptedOut method, create a promise for invoking an Amazon SNS 
service object, passing the parameters object. Then handle the response in the promise callback.

// Load the AWS SDK for Node.js

Sending SMS Messages 317

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sns/sns_setsmstype.js


AWS SDK for JavaScript Developer Guide for SDK v2

var AWS = require("aws-sdk");
// Set region
AWS.config.update({ region: "REGION" });

// Create promise and SNS service object
var phonenumPromise = new AWS.SNS({ apiVersion: "2010-03-31" }) 
  .checkIfPhoneNumberIsOptedOut({ phoneNumber: "PHONE_NUMBER" }) 
  .promise();

// Handle promise's fulfilled/rejected states
phonenumPromise 
  .then(function (data) { 
    console.log("Phone Opt Out is " + data.isOptedOut); 
  }) 
  .catch(function (err) { 
    console.error(err, err.stack); 
  });

To run the example, type the following at the command line.

node sns_checkphoneoptout.js

This sample code can be found here on GitHub.

Listing Opted-Out Phone Numbers

In this example, use a Node.js module to get a list of phone numbers that have 
opted out from receiving SMS messages. Create a Node.js module with the file name
sns_listnumbersoptedout.js. Configure the SDK as previously shown. Create an empty object 
as a parameter.

Pass the object to the listPhoneNumbersOptedOut method of the AWS.SNS client class. To call 
the listPhoneNumbersOptedOut method, create a promise for invoking an Amazon SNS service 
object, passing the parameters object. Then handle the response in the promise callback.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set region
AWS.config.update({ region: "REGION" });

// Create promise and SNS service object
var phonelistPromise = new AWS.SNS({ apiVersion: "2010-03-31" }) 

Sending SMS Messages 318

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sns/sns_checkphoneoptout.js


AWS SDK for JavaScript Developer Guide for SDK v2

  .listPhoneNumbersOptedOut({}) 
  .promise();

// Handle promise's fulfilled/rejected states
phonelistPromise 
  .then(function (data) { 
    console.log(data); 
  }) 
  .catch(function (err) { 
    console.error(err, err.stack); 
  });

To run the example, type the following at the command line.

node sns_listnumbersoptedout.js

This sample code can be found here on GitHub.

Publishing an SMS Message

In this example, use a Node.js module to send an SMS message to a phone number. Create a 
Node.js module with the file name sns_publishsms.js. Configure the SDK as previously shown. 
Create an object containing the Message and PhoneNumber parameters.

When you send an SMS message, specify the phone number using the E.164 format. E.164 is 
a standard for the phone number structure used for international telecommunication. Phone 
numbers that follow this format can have a maximum of 15 digits, and they are prefixed with the 
plus character (+) and the country code. For example, a US phone number in E.164 format would 
appear as +1001XXX5550100.

This example sets the PhoneNumber parameter to specify the phone number to send the message. 
Pass the object to the publish method of the AWS.SNS client class. To call the publish method, 
create a promise for invoking an Amazon SNS service object, passing the parameters object. Then 
handle the response in the promise callback.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set region
AWS.config.update({ region: "REGION" });

// Create publish parameters

Sending SMS Messages 319

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sns/sns_listnumbersoptedout.js


AWS SDK for JavaScript Developer Guide for SDK v2

var params = { 
  Message: "TEXT_MESSAGE" /* required */, 
  PhoneNumber: "E.164_PHONE_NUMBER",
};

// Create promise and SNS service object
var publishTextPromise = new AWS.SNS({ apiVersion: "2010-03-31" }) 
  .publish(params) 
  .promise();

// Handle promise's fulfilled/rejected states
publishTextPromise 
  .then(function (data) { 
    console.log("MessageID is " + data.MessageId); 
  }) 
  .catch(function (err) { 
    console.error(err, err.stack); 
  });

To run the example, type the following at the command line.

node sns_publishsms.js

This sample code can be found here on GitHub.

Amazon SQS Examples

Amazon Simple Queue Service (Amazon SQS) is a fast, reliable, scalable, fully managed message 
queuing service. Amazon SQS lets you decouple the components of a cloud application. Amazon 
SQS includes standard queues with high throughput and at-least-once processing, and FIFO queues 
that provide FIFO (first-in, first-out) delivery and exactly-once processing.

Amazon SQS Examples 320

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sns/sns_publishsms.js


AWS SDK for JavaScript Developer Guide for SDK v2

The JavaScript API for Amazon SQS is exposed through the AWS.SQS client class. For more 
information about using the Amazon SQS client class, see Class: AWS.SQS in the API reference.

Topics

• Using Queues in Amazon SQS

• Sending and Receiving Messages in Amazon SQS

• Managing Visibility Timeout in Amazon SQS

• Enabling Long Polling in Amazon SQS

• Using Dead Letter Queues in Amazon SQS

Using Queues in Amazon SQS

This Node.js code example shows:

• How to get a list of all of your message queues

• How to obtain the URL for a particular queue

• How to create and delete queues

About the Example

In this example, a series of Node.js modules are used to work with queues. The Node.js modules 
use the SDK for JavaScript to enable queues to call the following methods of the AWS.SQS client 
class:

• listQueues

• createQueue

• getQueueUrl

• deleteQueue

For more information about Amazon SQS messages, see How Queues Work in the Amazon Simple 
Queue Service Developer Guide.

Using Queues in Amazon SQS 321

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SQS.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SQS.html#listQueues-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SQS.html#createQueue-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SQS.html#getQueueUrl-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SQS.html#deleteQueue-property
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-how-it-works.html


AWS SDK for JavaScript Developer Guide for SDK v2

Prerequisite Tasks

To set up and run this example, you must first complete these tasks:

• Install Node.js. For more information about installing Node.js, see the Node.js website.

• Create a shared configurations file with your user credentials. For more information about 
providing a shared credentials file, see Loading Credentials in Node.js from the Shared 
Credentials File.

Listing Your Queues

Create a Node.js module with the file name sqs_listqueues.js. Be sure to configure the SDK as 
previously shown. To access Amazon SQS, create an AWS.SQS service object. Create a JSON object 
containing the parameters needed to list your queues, which by default is an empty object. Call the
listQueues method to retrieve the list of queues. The callback returns the URLs of all queues.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create an SQS service object
var sqs = new AWS.SQS({ apiVersion: "2012-11-05" });

var params = {};

sqs.listQueues(params, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Success", data.QueueUrls); 
  }
});

To run the example, type the following at the command line.

node sqs_listqueues.js

This sample code can be found here on GitHub.

Using Queues in Amazon SQS 322

https://nodejs.org
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sqs/sqs_listqueues.js


AWS SDK for JavaScript Developer Guide for SDK v2

Creating a Queue

Create a Node.js module with the file name sqs_createqueue.js. Be sure to configure the SDK 
as previously shown. To access Amazon SQS, create an AWS.SQS service object. Create a JSON 
object containing the parameters needed to list your queues, which must include the name for 
the queue created. The parameters can also contain attributes for the queue, such as the number 
of seconds for which message delivery is delayed or the number of seconds to retain a received 
message. Call the createQueue method. The callback returns the URL of the created queue.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create an SQS service object
var sqs = new AWS.SQS({ apiVersion: "2012-11-05" });

var params = { 
  QueueName: "SQS_QUEUE_NAME", 
  Attributes: { 
    DelaySeconds: "60", 
    MessageRetentionPeriod: "86400", 
  },
};

sqs.createQueue(params, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Success", data.QueueUrl); 
  }
});

To run the example, type the following at the command line.

node sqs_createqueue.js

This sample code can be found here on GitHub.

Using Queues in Amazon SQS 323

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sqs/sqs_createqueue.js


AWS SDK for JavaScript Developer Guide for SDK v2

Getting the URL for a Queue

Create a Node.js module with the file name sqs_getqueueurl.js. Be sure to configure the SDK 
as previously shown. To access Amazon SQS, create an AWS.SQS service object. Create a JSON 
object containing the parameters needed to list your queues, which must include the name of the 
queue whose URL you want. Call the getQueueUrl method. The callback returns the URL of the 
specified queue.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create an SQS service object
var sqs = new AWS.SQS({ apiVersion: "2012-11-05" });

var params = { 
  QueueName: "SQS_QUEUE_NAME",
};

sqs.getQueueUrl(params, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Success", data.QueueUrl); 
  }
});

To run the example, type the following at the command line.

node sqs_getqueueurl.js

This sample code can be found here on GitHub.

Deleting a Queue

Create a Node.js module with the file name sqs_deletequeue.js. Be sure to configure the SDK 
as previously shown. To access Amazon SQS, create an AWS.SQS service object. Create a JSON 
object containing the parameters needed to delete a queue, which consists of the URL of the queue 
you want to delete. Call the deleteQueue method.

Using Queues in Amazon SQS 324

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sqs/sqs_getqueueurl.js


AWS SDK for JavaScript Developer Guide for SDK v2

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create an SQS service object
var sqs = new AWS.SQS({ apiVersion: "2012-11-05" });

var params = { 
  QueueUrl: "SQS_QUEUE_URL",
};

sqs.deleteQueue(params, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Success", data); 
  }
});

To run the example, type the following at the command line.

node sqs_deletequeue.js

This sample code can be found here on GitHub.

Sending and Receiving Messages in Amazon SQS

This Node.js code example shows:

• How to send messages in a queue.

• How to receive messages in a queue.

• How to delete messages in a queue.

Sending and Receiving Messages in Amazon SQS 325

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sqs/sqs_deletequeue.js


AWS SDK for JavaScript Developer Guide for SDK v2

The Scenario

In this example, a series of Node.js modules are used to send and receive messages. The Node.js 
modules use the SDK for JavaScript to send and receive messages by using these methods of the
AWS.SQS client class:

• sendMessage

• receiveMessage

• deleteMessage

For more information about Amazon SQS messages, see Sending a Message to an Amazon SQS 
Queue and Receiving and Deleting a Message from an Amazon SQS Queue in the Amazon Simple 
Queue Service Developer Guide.

Prerequisite Tasks

To set up and run this example, you must first complete these tasks:

• Install Node.js. For more information about installing Node.js, see the Node.js website.

• Create a shared configurations file with your user credentials. For more information about 
providing a shared credentials file, see Loading Credentials in Node.js from the Shared 
Credentials File.

• Create an Amazon SQS queue. For an example of creating a queue, see Using Queues in Amazon 
SQS.

Sending a Message to a Queue

Create a Node.js module with the file name sqs_sendmessage.js. Be sure to configure the SDK 
as previously shown. To access Amazon SQS, create an AWS.SQS service object. Create a JSON 
object containing the parameters needed for your message, including the URL of the queue to 
which you want to send this message. In this example, the message provides details about a book 
on a list of fiction best sellers including the title, author, and number of weeks on the list.

Call the sendMessage method. The callback returns the unique ID of the message.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");

Sending and Receiving Messages in Amazon SQS 326

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SQS.html#sendMessage-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SQS.html#receiveMessage-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SQS.html#deleteMessage-property
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-send-message.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-send-message.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-receive-delete-message.html
https://nodejs.org


AWS SDK for JavaScript Developer Guide for SDK v2

// Set the region
AWS.config.update({ region: "REGION" });

// Create an SQS service object
var sqs = new AWS.SQS({ apiVersion: "2012-11-05" });

var params = { 
  // Remove DelaySeconds parameter and value for FIFO queues 
  DelaySeconds: 10, 
  MessageAttributes: { 
    Title: { 
      DataType: "String", 
      StringValue: "The Whistler", 
    }, 
    Author: { 
      DataType: "String", 
      StringValue: "John Grisham", 
    }, 
    WeeksOn: { 
      DataType: "Number", 
      StringValue: "6", 
    }, 
  }, 
  MessageBody: 
    "Information about current NY Times fiction bestseller for week of 12/11/2016.", 
  // MessageDeduplicationId: "TheWhistler",  // Required for FIFO queues 
  // MessageGroupId: "Group1",  // Required for FIFO queues 
  QueueUrl: "SQS_QUEUE_URL",
};

sqs.sendMessage(params, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Success", data.MessageId); 
  }
});

To run the example, type the following at the command line.

node sqs_sendmessage.js

This sample code can be found here on GitHub.

Sending and Receiving Messages in Amazon SQS 327

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sqs/sqs_sendmessage.js


AWS SDK for JavaScript Developer Guide for SDK v2

Receiving and Deleting Messages from a Queue

Create a Node.js module with the file name sqs_receivemessage.js. Be sure to configure the 
SDK as previously shown. To access Amazon SQS, create an AWS.SQS service object. Create a JSON 
object containing the parameters needed for your message, including the URL of the queue from 
which you want to receive messages. In this example, the parameters specify receipt of all message 
attributes, as well as receipt of no more than 10 messages.

Call the receiveMessage method. The callback returns an array of Message objects from which 
you can retrieve ReceiptHandle for each message that you use to later delete that message. 
Create another JSON object containing the parameters needed to delete the message, which are 
the URL of the queue and the ReceiptHandle value. Call the deleteMessage method to delete 
the message you received.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create an SQS service object
var sqs = new AWS.SQS({ apiVersion: "2012-11-05" });

var queueURL = "SQS_QUEUE_URL";

var params = { 
  AttributeNames: ["SentTimestamp"], 
  MaxNumberOfMessages: 10, 
  MessageAttributeNames: ["All"], 
  QueueUrl: queueURL, 
  VisibilityTimeout: 20, 
  WaitTimeSeconds: 0,
};

sqs.receiveMessage(params, function (err, data) { 
  if (err) { 
    console.log("Receive Error", err); 
  } else if (data.Messages) { 
    var deleteParams = { 
      QueueUrl: queueURL, 
      ReceiptHandle: data.Messages[0].ReceiptHandle, 
    }; 
    sqs.deleteMessage(deleteParams, function (err, data) { 

Sending and Receiving Messages in Amazon SQS 328



AWS SDK for JavaScript Developer Guide for SDK v2

      if (err) { 
        console.log("Delete Error", err); 
      } else { 
        console.log("Message Deleted", data); 
      } 
    }); 
  }
});

To run the example, type the following at the command line.

node sqs_receivemessage.js

This sample code can be found here on GitHub.

Managing Visibility Timeout in Amazon SQS

This Node.js code example shows:

• How to specify the time interval during which messages received by a queue are not visible.

The Scenario

In this example, a Node.js module is used to manage visibility timeout. The Node.js module uses 
the SDK for JavaScript to manage visibility timeout by using this method of the AWS.SQS client 
class:

• changeMessageVisibility

For more information about Amazon SQS visibility timeout, see Visibility Timeout in the Amazon 
Simple Queue Service Developer Guide.

Prerequisite Tasks

To set up and run this example, you must first complete these tasks:

Managing Visibility Timeout in Amazon SQS 329

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sqs/sqs_receivemessage.js
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SQS.html#changeMessageVisibility-property
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-visibility-timeout.html


AWS SDK for JavaScript Developer Guide for SDK v2

• Install Node.js. For more information about installing Node.js, see the Node.js website.

• Create a shared configurations file with your user credentials. For more information about 
providing a shared credentials file, see Loading Credentials in Node.js from the Shared 
Credentials File.

• Create an Amazon SQS queue. For an example of creating a queue, see Using Queues in Amazon 
SQS.

• Send a message to the queue. For an example of sending a message to a queue, see Sending and 
Receiving Messages in Amazon SQS.

Changing the Visibility Timeout

Create a Node.js module with the file name sqs_changingvisibility.js. Be sure to configure 
the SDK as previously shown. To access Amazon Simple Queue Service, create an AWS.SQS service 
object. Receive the message from the queue.

Upon receipt of the message from the queue, create a JSON object containing the parameters 
needed for setting the timeout, including the URL of the queue containing the message, the
ReceiptHandle returned when the message was received, and the new timeout in seconds. Call 
the changeMessageVisibility method.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region to us-west-2
AWS.config.update({ region: "us-west-2" });

// Create the SQS service object
var sqs = new AWS.SQS({ apiVersion: "2012-11-05" });

var queueURL = "https://sqs.REGION.amazonaws.com/ACCOUNT-ID/QUEUE-NAME";

var params = { 
  AttributeNames: ["SentTimestamp"], 
  MaxNumberOfMessages: 1, 
  MessageAttributeNames: ["All"], 
  QueueUrl: queueURL,
};

sqs.receiveMessage(params, function (err, data) { 
  if (err) { 

Managing Visibility Timeout in Amazon SQS 330

https://nodejs.org


AWS SDK for JavaScript Developer Guide for SDK v2

    console.log("Receive Error", err); 
  } else { 
    // Make sure we have a message 
    if (data.Messages != null) { 
      var visibilityParams = { 
        QueueUrl: queueURL, 
        ReceiptHandle: data.Messages[0].ReceiptHandle, 
        VisibilityTimeout: 20, // 20 second timeout 
      }; 
      sqs.changeMessageVisibility(visibilityParams, function (err, data) { 
        if (err) { 
          console.log("Delete Error", err); 
        } else { 
          console.log("Timeout Changed", data); 
        } 
      }); 
    } else { 
      console.log("No messages to change"); 
    } 
  }
});

To run the example, type the following at the command line.

node sqs_changingvisibility.js

This sample code can be found here on GitHub.

Enabling Long Polling in Amazon SQS

This Node.js code example shows:

• How to enable long polling for a newly created queue

• How to enable long polling for an existing queue

• How to enable long polling upon receipt of a message

Enabling Long Polling in Amazon SQS 331

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sqs/sqs_changingvisibility.js


AWS SDK for JavaScript Developer Guide for SDK v2

The Scenario

Long polling reduces the number of empty responses by allowing Amazon SQS to wait a specified 
time for a message to become available in the queue before sending a response. Also, long polling 
eliminates false empty responses by querying all of the servers instead of a sampling of servers. 
To enable long polling, you must specify a non-zero wait time for received messages. You can do 
this by setting the ReceiveMessageWaitTimeSeconds parameter of a queue or by setting the
WaitTimeSeconds parameter on a message when it is received.

In this example, a series of Node.js modules are used to enable long polling. The Node.js modules 
use the SDK for JavaScript to enable long polling using these methods of the AWS.SQS client class:

• setQueueAttributes

• receiveMessage

• createQueue

For more information about Amazon SQS long polling, see Long Polling in the Amazon Simple 
Queue Service Developer Guide.

Prerequisite Tasks

To set up and run this example, you must first complete these tasks:

• Install Node.js. For more information about installing Node.js, see the Node.js website.

• Create a shared configurations file with your user credentials. For more information about 
providing a shared credentials file, see Loading Credentials in Node.js from the Shared 
Credentials File.

Enabling Long Polling When Creating a Queue

Create a Node.js module with the file name sqs_longpolling_createqueue.js. Be sure to 
configure the SDK as previously shown. To access Amazon SQS, create an AWS.SQS service object. 
Create a JSON object containing the parameters needed to create a queue, including a non-zero 
value for the ReceiveMessageWaitTimeSeconds parameter. Call the createQueue method. 
Long polling is then enabled for the queue.

// Load the AWS SDK for Node.js

Enabling Long Polling in Amazon SQS 332

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SQS.html#setQueueAttributes-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SQS.html#receiveMessage-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SQS.html#createQueue-property
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-long-polling.html
https://nodejs.org


AWS SDK for JavaScript Developer Guide for SDK v2

var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the SQS service object
var sqs = new AWS.SQS({ apiVersion: "2012-11-05" });

var params = { 
  QueueName: "SQS_QUEUE_NAME", 
  Attributes: { 
    ReceiveMessageWaitTimeSeconds: "20", 
  },
};

sqs.createQueue(params, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Success", data.QueueUrl); 
  }
});

To run the example, type the following at the command line.

node sqs_longpolling_createqueue.js

This sample code can be found here on GitHub.

Enabling Long Polling on an Existing Queue

Create a Node.js module with the file name sqs_longpolling_existingqueue.js. Be sure 
to configure the SDK as previously shown. To access Amazon Simple Queue Service, create an
AWS.SQS service object. Create a JSON object containing the parameters needed to set the 
attributes of queue, including a non-zero value for the ReceiveMessageWaitTimeSeconds
parameter and the URL of the queue. Call the setQueueAttributes method. Long polling is then 
enabled for the queue.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

Enabling Long Polling in Amazon SQS 333

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sqs/sqs_longpolling_createqueue.js


AWS SDK for JavaScript Developer Guide for SDK v2

// Create the SQS service object
var sqs = new AWS.SQS({ apiVersion: "2012-11-05" });

var params = { 
  Attributes: { 
    ReceiveMessageWaitTimeSeconds: "20", 
  }, 
  QueueUrl: "SQS_QUEUE_URL",
};

sqs.setQueueAttributes(params, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Success", data); 
  }
});

To run the example, type the following at the command line.

node sqs_longpolling_existingqueue.js

This sample code can be found here on GitHub.

Enabling Long Polling on Message Receipt

Create a Node.js module with the file name sqs_longpolling_receivemessage.js. Be 
sure to configure the SDK as previously shown. To access Amazon Simple Queue Service, create 
an AWS.SQS service object. Create a JSON object containing the parameters needed to receive 
messages, including a non-zero value for the WaitTimeSeconds parameter and the URL of the 
queue. Call the receiveMessage method.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the SQS service object
var sqs = new AWS.SQS({ apiVersion: "2012-11-05" });

var queueURL = "SQS_QUEUE_URL";

Enabling Long Polling in Amazon SQS 334

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sqs/sqs_longpolling_existingqueue.js


AWS SDK for JavaScript Developer Guide for SDK v2

var params = { 
  AttributeNames: ["SentTimestamp"], 
  MaxNumberOfMessages: 1, 
  MessageAttributeNames: ["All"], 
  QueueUrl: queueURL, 
  WaitTimeSeconds: 20,
};

sqs.receiveMessage(params, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Success", data); 
  }
});

To run the example, type the following at the command line.

node sqs_longpolling_receivemessage.js

This sample code can be found here on GitHub.

Using Dead Letter Queues in Amazon SQS

This Node.js code example shows:

• How to use a queue to receive and hold messages from other queues that the queues can't 
process.

The Scenario

A dead letter queue is one that other (source) queues can target for messages that can't be 
processed successfully. You can set aside and isolate these messages in the dead letter queue to 
determine why their processing did not succeed. You must individually configure each source queue 
that sends messages to a dead letter queue. Multiple queues can target a single dead letter queue.

Using Dead Letter Queues in Amazon SQS 335

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sqs/sqs_longpolling_receivemessage.js


AWS SDK for JavaScript Developer Guide for SDK v2

In this example, a Node.js module is used to route messages to a dead letter queue. The Node.js 
module uses the SDK for JavaScript to use dead letter queues using this method of the AWS.SQS
client class:

• setQueueAttributes

For more information about Amazon SQS dead letter queues, see Using Amazon SQS Dead Letter 
Queues in the Amazon Simple Queue Service Developer Guide.

Prerequisite Tasks

To set up and run this example, you must first complete these tasks:

• Install Node.js. For more information about installing Node.js, see the Node.js website.

• Create a shared configurations file with your user credentials. For more information about 
providing a shared credentials file, see Loading Credentials in Node.js from the Shared 
Credentials File.

• Create an Amazon SQS queue to serve as a dead letter queue. For an example of creating a 
queue, see Using Queues in Amazon SQS.

Configuring Source Queues

After you create a queue to act as a dead letter queue, you must configure the other queues 
that route unprocessed messages to the dead letter queue. To do this, specify a redrive policy 
that identifies the queue to use as a dead letter queue and the maximum number of receives by 
individual messages before they are routed to the dead letter queue.

Create a Node.js module with the file name sqs_deadletterqueue.js. Be sure to configure 
the SDK as previously shown. To access Amazon SQS, create an AWS.SQS service object. Create 
a JSON object containing the parameters needed to update queue attributes, including the
RedrivePolicy parameter that specifies both the ARN of the dead letter queue, as well as the 
value of maxReceiveCount. Also specify the URL source queue you want to configure. Call the
setQueueAttributes method.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

Using Dead Letter Queues in Amazon SQS 336

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SQS.html#setQueueAttributes-property
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-dead-letter-queues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-dead-letter-queues.html
https://nodejs.org


AWS SDK for JavaScript Developer Guide for SDK v2

// Create the SQS service object
var sqs = new AWS.SQS({ apiVersion: "2012-11-05" });

var params = { 
  Attributes: { 
    RedrivePolicy: 
      '{"deadLetterTargetArn":"DEAD_LETTER_QUEUE_ARN","maxReceiveCount":"10"}', 
  }, 
  QueueUrl: "SOURCE_QUEUE_URL",
};

sqs.setQueueAttributes(params, function (err, data) { 
  if (err) { 
    console.log("Error", err); 
  } else { 
    console.log("Success", data); 
  }
});

To run the example, type the following at the command line.

node sqs_deadletterqueue.js

This sample code can be found here on GitHub.

Using Dead Letter Queues in Amazon SQS 337

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sqs/sqs_deadletterqueue.js


AWS SDK for JavaScript Developer Guide for SDK v2

Tutorials

The following tutorials show you how to perform different tasks related to using the AWS SDK for 
JavaScript.

Topics

• Tutorial: Setting Up Node.js on an Amazon EC2 Instance

Tutorial: Setting Up Node.js on an Amazon EC2 Instance

A common scenario for using Node.js with the SDK for JavaScript is to set up and run a Node.js web 
application on an Amazon Elastic Compute Cloud (Amazon EC2) instance. In this tutorial, you will 
create a Linux instance, connect to it using SSH, and then install Node.js to run on that instance.

Prerequisites

This tutorial assumes that you have already launched a Linux instance with a public DNS name 
that is reachable from the Internet and to which you are able to connect using SSH. For more 
information, see Step 1: Launch an Instance in the Amazon EC2 User Guide for Linux Instances.

Important

Use the Amazon Linux 2023 Amazon Machine Image (AMI) when launching a new Amazon 
EC2 instance.

You must also have configured your security group to allow SSH (port 22), HTTP (port 80), and
HTTPS (port 443) connections. For more information about these prerequisites, see  Setting Up 
with Amazon Amazon EC2 in the Amazon EC2 User Guide for Linux Instances.

Procedure

The following procedure helps you install Node.js on an Amazon Linux instance. You can use this 
server to host a Node.js web application.

To set up Node.js on your Linux instance

1. Connect to your Linux instance as ec2-user using SSH.

Tutorial: Setting Up Node.js on an Amazon EC2 Instance 338

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#ec2-launch-instance
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/get-set-up-for-amazon-ec2.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/get-set-up-for-amazon-ec2.html


AWS SDK for JavaScript Developer Guide for SDK v2

2. Install node version manager (nvm) by typing the following at the command line.

Warning

AWS does not control the following code. Before you run it, be sure to verify its 
authenticity and integrity. More information about this code can be found in the nvm
GitHub repository.

curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.39.7/install.sh | bash

We will use nvm to install Node.js because nvm can install multiple versions of Node.js and 
allow you to switch between them.

3. Load nvm by typing the following at the command line.

source ~/.bashrc

4. Use nvm to install the latest LTS version of Node.js by typing the following at the command 
line.

nvm install --lts

Installing Node.js also installs the Node Package Manager (npm), so you can install additional 
modules as needed.

5. Test that Node.js is installed and running correctly by typing the following at the command 
line.

node -e "console.log('Running Node.js ' + process.version)"

This displays the following message that shows the version of Node.js that is running.

Running Node.js VERSION

Note

The node installation only applies to the current Amazon EC2 session. If you restart your 
CLI session you need to use nvm to enable the installed node version. If the instance is 

Procedure 339

https://github.com/nvm-sh/nvm/blob/master/README.md


AWS SDK for JavaScript Developer Guide for SDK v2

terminated, you need to install node again. The alternative is to make an Amazon Machine 
Image (AMI) of the Amazon EC2 instance once you have the configuration that you want to 
keep, as described in the following topic.

Creating an Amazon Machine Image

After you install Node.js on an Amazon EC2 instance, you can create an Amazon Machine Image 
(AMI) from that instance. Creating an AMI makes it easy to provision multiple Amazon EC2 
instances with the same Node.js installation. For more information about creating an AMI from an 
existing instance, see Creating an Amazon EBS-Backed Linux AMI in the Amazon EC2 User Guide for 
Linux Instances.

Related Resources

For more information about the commands and software used in this topic, see the following web 
pages:

• node version manager (nvm): see nvm repo on GitHub.

• node package manager (npm): see npm website.

Creating an Amazon Machine Image 340

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/creating-an-ami-ebs.html
https://github.com/creationix/nvm
https://www.npmjs.com


AWS SDK for JavaScript Developer Guide for SDK v2

JavaScript API Reference

The API Reference topics for the latest version of the SDK for JavaScript are found at:

AWS SDK for JavaScript API Reference Guide.

SDK Changelog on GitHub

The changelog for releases from version 2.4.8 and later is found at:

Change log.

SDK Changelog on GitHub 341

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/
https://github.com/aws/aws-sdk-js/blob/master/CHANGELOG.md


AWS SDK for JavaScript Developer Guide for SDK v2

Security for this AWS Product or Service

Cloud security at Amazon Web Services (AWS) is the highest priority. As an AWS customer, you 
benefit from a data center and network architecture that is built to meet the requirements of the 
most security-sensitive organizations. Security is a shared responsibility between AWS and you. The
Shared Responsibility Model describes this as Security of the Cloud and Security in the Cloud.

Security of the Cloud – AWS is responsible for protecting the infrastructure that runs all of the 
services offered in the AWS Cloud and providing you with services that you can use securely. 
Our security responsibility is the highest priority at AWS, and the effectiveness of our security is 
regularly tested and verified by third-party auditors as part of the AWS Compliance Programs.

Security in the Cloud – Your responsibility is determined by the AWS service you are using, 
and other factors including the sensitivity of your data, your organization’s requirements, and 
applicable laws and regulations.

This AWS product or service follows the shared responsibility model through the specific Amazon 
Web Services (AWS) services it supports. For AWS service security information, see the AWS service 
security documentation page and AWS services that are in scope of AWS compliance efforts by 
compliance program.

Topics

• Data protection in this AWS product or service

• Identity and Access Management

• Compliance Validation for this AWS Product or Service

• Resilience for this AWS Product or Service

• Infrastructure Security for this AWS Product or Service

• Enforcing a minimum version of TLS

Data protection in this AWS product or service

The AWS shared responsibility model applies to data protection in this AWS product or service. As 
described in this model, AWS is responsible for protecting the global infrastructure that runs all 
of the AWS Cloud. You are responsible for maintaining control over your content that is hosted on 
this infrastructure. You are also responsible for the security configuration and management tasks 

Data protection 342

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/shared-responsibility-model/


AWS SDK for JavaScript Developer Guide for SDK v2

for the AWS services that you use. For more information about data privacy, see the Data Privacy 
FAQ. For information about data protection in Europe, see the AWS Shared Responsibility Model 
and GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set 
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM). 
That way, each user is given only the permissions necessary to fulfill their job duties. We also 
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and 
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a 
command line interface or an API, use a FIPS endpoint. For more information about the available 
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

We strongly recommend that you never put confidential or sensitive information, such as your 
customers' email addresses, into tags or free-form text fields such as a Name field. This includes 
when you work with this AWS product or service or other AWS services using the console, API, 
AWS CLI, or AWS SDKs. Any data that you enter into tags or free-form text fields used for names 
may be used for billing or diagnostic logs. If you provide a URL to an external server, we strongly 
recommend that you do not include credentials information in the URL to validate your request to 
that server.

Identity and Access Management

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely 
control access to AWS resources. IAM administrators control who can be authenticated (signed in) 
and authorized (have permissions) to use AWS resources. IAM is an AWS service that you can use 
with no additional charge.

Topics

• Audience

Identity and Access Management 343

https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/compliance/fips/


AWS SDK for JavaScript Developer Guide for SDK v2

• Authenticating with identities

• Managing access using policies

• How AWS services work with IAM

• Troubleshooting AWS identity and access

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you 
do in AWS.

Service user – If you use AWS services to do your job, then your administrator provides you with 
the credentials and permissions that you need. As you use more AWS features to do your work, 
you might need additional permissions. Understanding how access is managed can help you 
request the right permissions from your administrator. If you cannot access a feature in AWS, see
Troubleshooting AWS identity and access or the user guide of the AWS service you are using.

Service administrator – If you're in charge of AWS resources at your company, you probably have 
full access to AWS. It's your job to determine which AWS features and resources your service users 
should access. You must then submit requests to your IAM administrator to change the permissions 
of your service users. Review the information on this page to understand the basic concepts of 
IAM. To learn more about how your company can use IAM with AWS, see the user guide of the AWS 
service you are using.

IAM administrator – If you're an IAM administrator, you might want to learn details about how you 
can write policies to manage access to AWS. To view example AWS identity-based policies that you 
can use in IAM, see the user guide of the AWS service you are using.

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an 
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity 
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on 
authentication, and your Google or Facebook credentials are examples of federated identities. 
When you sign in as a federated identity, your administrator previously set up identity federation 
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Audience 344



AWS SDK for JavaScript Developer Guide for SDK v2

Depending on the type of user you are, you can sign in to the AWS Management Console or the 
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS 
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a 
command line interface (CLI) to cryptographically sign your requests by using your credentials. If 
you don't use AWS tools, you must sign requests yourself. For more information about using the 
recommended method to sign requests yourself, see Signing AWS API requests in the IAM User 
Guide.

Regardless of the authentication method that you use, you might be required to provide additional 
security information. For example, AWS recommends that you use multi-factor authentication 
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in the
AWS IAM Identity Center User Guide and Using multi-factor authentication (MFA) in AWS in the IAM 
User Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to 
all AWS services and resources in the account. This identity is called the AWS account root user and 
is accessed by signing in with the email address and password that you used to create the account. 
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your 
root user credentials and use them to perform the tasks that only the root user can perform. For 
the complete list of tasks that require you to sign in as the root user, see Tasks that require root 
user credentials in the IAM User Guide.

Federated identity

As a best practice, require human users, including users that require administrator access, to use 
federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS 
Directory Service, the Identity Center directory, or any user that accesses AWS services by using 
credentials provided through an identity source. When federated identities access AWS accounts, 
they assume roles, and the roles provide temporary credentials.

For centralized access management, we recommend that you use AWS IAM Identity Center. You can 
create users and groups in IAM Identity Center, or you can connect and synchronize to a set of users 
and groups in your own identity source for use across all your AWS accounts and applications. For 

Authenticating with identities 345

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html


AWS SDK for JavaScript Developer Guide for SDK v2

information about IAM Identity Center, see What is IAM Identity Center? in the AWS IAM Identity 
Center User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person 
or application. Where possible, we recommend relying on temporary credentials instead of creating 
IAM users who have long-term credentials such as passwords and access keys. However, if you have 
specific use cases that require long-term credentials with IAM users, we recommend that you rotate 
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You 
can use groups to specify permissions for multiple users at a time. Groups make permissions easier 
to manage for large sets of users. For example, you could have a group named IAMAdmins and give 
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but 
a role is intended to be assumable by anyone who needs it. Users have permanent long-term 
credentials, but roles provide temporary credentials. To learn more, see When to create an IAM user 
(instead of a role) in the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an 
IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in 
the AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or 
AWS API operation or by using a custom URL. For more information about methods for using roles, 
see Using IAM roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role 
and define permissions for the role. When a federated identity authenticates, the identity 
is associated with the role and is granted the permissions that are defined by the role. For 
information about roles for federation, see  Creating a role for a third-party Identity Provider
in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control 
what your identities can access after they authenticate, IAM Identity Center correlates the 
permission set to a role in IAM. For information about permissions sets, see  Permission sets in 
the AWS IAM Identity Center User Guide.

Authenticating with identities 346

https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html


AWS SDK for JavaScript Developer Guide for SDK v2

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily 
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a 
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource 
(instead of using a role as a proxy). To learn the difference between roles and resource-based 
policies for cross-account access, see How IAM roles differ from resource-based policies in the
IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when 
you make a call in a service, it's common for that service to run applications in Amazon EC2 or 
store objects in Amazon S3. A service might do this using the calling principal's permissions, 
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in 
AWS, you are considered a principal. When you use some services, you might perform an 
action that then initiates another action in a different service. FAS uses the permissions of the 
principal calling an AWS service, combined with the requesting AWS service to make requests 
to downstream services. FAS requests are only made when a service receives a request that 
requires interactions with other AWS services or resources to complete. In this case, you must 
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your 
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For 
more information, see Creating a role to delegate permissions to an AWS service in the IAM 
User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS 
service. The service can assume the role to perform an action on your behalf. Service-linked 
roles appear in your AWS account and are owned by the service. An IAM administrator can 
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary 
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API 
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role 
to an EC2 instance and make it available to all of its applications, you create an instance profile 
that is attached to the instance. An instance profile contains the role and enables programs that 
are running on the EC2 instance to get temporary credentials. For more information, see Using 

Authenticating with identities 347

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html


AWS SDK for JavaScript Developer Guide for SDK v2

an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM 
User Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user)
in the IAM User Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources. 
A policy is an object in AWS that, when associated with an identity or resource, defines their 
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes 
a request. Permissions in the policies determine whether the request is allowed or denied. Most 
policies are stored in AWS as JSON documents. For more information about the structure and 
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on 
the resources that they need, an IAM administrator can create IAM policies. The administrator can 
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the 
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A 
user with that policy can get role information from the AWS Management Console, the AWS CLI, or 
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity, 
such as an IAM user, group of users, or role. These policies control what actions users and roles can 
perform, on which resources, and under what conditions. To learn how to create an identity-based 
policy, see Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline 
policies are embedded directly into a single user, group, or role. Managed policies are standalone 
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed 
policies include AWS managed policies and customer managed policies. To learn how to choose 

Managing access using policies 348

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html


AWS SDK for JavaScript Developer Guide for SDK v2

between a managed policy or an inline policy, see Choosing between managed policies and inline 
policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of 
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that 
support resource-based policies, service administrators can use them to control access to a specific 
resource. For the resource where the policy is attached, the policy defines what actions a specified 
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS 
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS 
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have 
permissions to access a resource. ACLs are similar to resource-based policies, although they do not 
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more 
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer 
Guide.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum 
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set 
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user 
or role). You can set a permissions boundary for an entity. The resulting permissions are the 
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based 
policies that specify the user or role in the Principal field are not limited by the permissions 
boundary. An explicit deny in any of these policies overrides the allow. For more information 
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions 
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a 

Managing access using policies 349

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html


AWS SDK for JavaScript Developer Guide for SDK v2

service for grouping and centrally managing multiple AWS accounts that your business owns. If 
you enable all features in an organization, then you can apply service control policies (SCPs) to 
any or all of your accounts. The SCP limits permissions for entities in member accounts, including 
each AWS account root user. For more information about Organizations and SCPs, see How SCPs 
work in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you 
programmatically create a temporary session for a role or federated user. The resulting session's 
permissions are the intersection of the user or role's identity-based policies and the session 
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these 
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated 
to understand. To learn how AWS determines whether to allow a request when multiple policy 
types are involved, see Policy evaluation logic in the IAM User Guide.

How AWS services work with IAM

To get a high-level view of how AWS services work with most IAM features, see AWS services that 
work with IAM in the IAM User Guide.

To learn how to use a specific AWS service with IAM, see the security section of the relevant 
service's User Guide.

Troubleshooting AWS identity and access

Use the following information to help you diagnose and fix common issues that you might 
encounter when working with AWS and IAM.

Topics

• I am not authorized to perform an action in AWS

• I am not authorized to perform iam:PassRole

• I want to allow people outside of my AWS account to access my AWS resources

How AWS services work with IAM 350

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html


AWS SDK for JavaScript Developer Guide for SDK v2

I am not authorized to perform an action in AWS

If you receive an error that you're not authorized to perform an action, your policies must be 
updated to allow you to perform the action.

The following example error occurs when the mateojackson IAM user tries to use the console 
to view details about a fictional my-example-widget resource but doesn't have the fictional
awes:GetWidget permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform: 
 awes:GetWidget on resource: my-example-widget

In this case, the policy for the mateojackson user must be updated to allow access to the my-
example-widget resource by using the awes:GetWidget action.

If you need help, contact your AWS administrator. Your administrator is the person who provided 
you with your sign-in credentials.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your 
policies must be updated to allow you to pass a role to AWS.

Some AWS services allow you to pass an existing role to that service instead of creating a new 
service role or service-linked role. To do this, you must have permissions to pass the role to the 
service.

The following example error occurs when an IAM user named marymajor tries to use the console 
to perform an action in AWS. However, the action requires the service to have permissions that are 
granted by a service role. Mary does not have permissions to pass the role to the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform: 
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided 
you with your sign-in credentials.

Troubleshooting AWS identity and access 351



AWS SDK for JavaScript Developer Guide for SDK v2

I want to allow people outside of my AWS account to access my AWS resources

You can create a role that users in other accounts or people outside of your organization can use to 
access your resources. You can specify who is trusted to assume the role. For services that support 
resource-based policies or access control lists (ACLs), you can use those policies to grant people 
access to your resources.

To learn more, consult the following:

• To learn whether AWS supports these features, see How AWS services work with IAM.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing 
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally 
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access, 
see How IAM roles differ from resource-based policies in the IAM User Guide.

Compliance Validation for this AWS Product or Service

To learn whether an AWS service is within the scope of specific compliance programs, see AWS 
services in Scope by Compliance Program and choose the compliance program that you are 
interested in. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using AWS services is determined by the sensitivity of your 
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the 
following resources to help with compliance:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural 
considerations and provide steps for deploying baseline environments on AWS that are security 
and compliance focused.

• Architecting for HIPAA Security and Compliance on Amazon Web Services – This whitepaper 
describes how companies can use AWS to create HIPAA-eligible applications.

Compliance Validation 352

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/quickstart/?awsf.filter-tech-category=tech-category%23security-identity-compliance
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/welcome.html


AWS SDK for JavaScript Developer Guide for SDK v2

Note

Not all AWS services are HIPAA eligible. For more information, see the HIPAA Eligible 
Services Reference.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your 
industry and location.

• AWS Customer Compliance Guides – Understand the shared responsibility model through the 
lens of compliance. The guides summarize the best practices for securing AWS services and map 
the guidance to security controls across multiple frameworks (including National Institute of 
Standards and Technology (NIST), Payment Card Industry Security Standards Council (PCI), and 
International Organization for Standardization (ISO)).

• Evaluating Resources with Rules in the AWS Config Developer Guide – The AWS Config service 
assesses how well your resource configurations comply with internal practices, industry 
guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within 
AWS. Security Hub uses security controls to evaluate your AWS resources and to check your 
compliance against security industry standards and best practices. For a list of supported services 
and controls, see Security Hub controls reference.

• AWS Audit Manager – This AWS service helps you continuously audit your AWS usage to simplify 
how you manage risk and compliance with regulations and industry standards.

This AWS product or service follows the shared responsibility model through the specific Amazon 
Web Services (AWS) services it supports. For AWS service security information, see the AWS service 
security documentation page and AWS services that are in scope of AWS compliance efforts by 
compliance program.

Resilience for this AWS Product or Service

The AWS global infrastructure is built around AWS Regions and Availability Zones.

AWS Regions provide multiple physically separated and isolated Availability Zones, which are 
connected with low-latency, high-throughput, and highly redundant networking.

Resilience 353

https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/resources/
https://d1.awsstatic.com/whitepapers/compliance/AWS_Customer_Compliance_Guides.pdf
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-controls-reference.html
https://docs.aws.amazon.com/audit-manager/latest/userguide/what-is.html
https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/


AWS SDK for JavaScript Developer Guide for SDK v2

With Availability Zones, you can design and operate applications and databases that automatically 
fail over between zones without interruption. Availability Zones are more highly available, fault 
tolerant, and scalable than traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

This AWS product or service follows the shared responsibility model through the specific Amazon 
Web Services (AWS) services it supports. For AWS service security information, see the AWS service 
security documentation page and AWS services that are in scope of AWS compliance efforts by 
compliance program.

Infrastructure Security for this AWS Product or Service

This AWS product or service uses managed services, and therefore is protected by the AWS 
global network security. For information about AWS security services and how AWS protects 
infrastructure, see AWS Cloud Security. To design your AWS environment using the best practices 
for infrastructure security, see Infrastructure Protection in Security Pillar AWS Well‐Architected 
Framework.

You use AWS published API calls to access this AWS Product or Service through the network. 
Clients must support the following:

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or 
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later 
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is 
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to 
generate temporary security credentials to sign requests.

This AWS product or service follows the shared responsibility model through the specific Amazon 
Web Services (AWS) services it supports. For AWS service security information, see the AWS service 
security documentation page and AWS services that are in scope of AWS compliance efforts by 
compliance program.

Infrastructure Security 354

https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/security/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/


AWS SDK for JavaScript Developer Guide for SDK v2

Enforcing a minimum version of TLS

Important

The AWS SDK for JavaScript v2 automatically negotiates the highest level TLS version 
supported by a given AWS Service endpoint. You can optionally enforce a minimum TLS 
version required by your application, such as TLS 1.2 or 1.3, but please note that TLS 1.3 is 
not supported by some AWS Service endpoints, so some calls may fail if you enforce TLS 
1.3.

To add increased security when communicating with AWS services, configure the AWS SDK for 
JavaScript to use TLS 1.2 or later.

Transport Layer Security (TLS) is a protocol used by web browsers and other applications to ensure 
the privacy and integrity of data exchanged over a network.

Verify and enforce TLS in Node.js

When you use the AWS SDK for JavaScript with Node.js, the underlying Node.js security layer is 
used to set the TLS version.

Node.js 12.0.0 and later use a minimum version of OpenSSL 1.1.1b, which supports TLS 1.3. The 
AWS SDK for JavaScript v3 defaults to use TLS 1.3 when available, but defaults to a lower version if 
required.

Verify the version of OpenSSL and TLS

To get the version of OpenSSL used by Node.js on your computer, run the following command.

node -p process.versions

The version of OpenSSL in the list is the version used by Node.js, as shown in the following 
example.

openssl: '1.1.1b'

To get the version of TLS used by Node.js on your computer, start the Node shell and run the 
following commands, in order.

Enforcing a minimum version of TLS 355



AWS SDK for JavaScript Developer Guide for SDK v2

> var tls = require("tls");
> var tlsSocket = new tls.TLSSocket();
> tlsSocket.getProtocol();

The last command outputs the TLS version, as shown in the following example.

'TLSv1.3'

Node.js defaults to use this version of TLS, and tries to negotiate another version of TLS if a call is 
not successful.

Enforce a minimum version of TLS

Node.js negotiates a version of TLS when a call fails. You can enforce the minimum allowable TLS 
version during this negotiation, either when running a script from the command line or per request 
in your JavaScript code.

To specify the minimum TLS version from the command line, you must use Node.js version 11.0.0 
or later. To install a specific Node.js version, first install Node Version Manager (nvm) using the 
steps found at Node Version Manager Installing and Updating. Then run the following commands 
to install and use a specific version of Node.js.

nvm install 11
nvm use 11

Enforcing TLS 1.2

To enforce that TLS 1.2 is the minimum allowable version, specify the --tls-min-v1.2
argument when running your script, as shown in the following example.

node --tls-min-v1.2 yourScript.js

To specify the minimum allowable TLS version for a specific request in your JavaScript code, use 
the httpOptions parameter to specify the protocol, as shown in the following example.

const https = require("https");
const {NodeHttpHandler} = require("@aws-sdk/node-http-handler");
const {DynamoDBClient} = require("@aws-sdk/client-dynamodb");

Verify and enforce TLS in Node.js 356

https://github.com/nvm-sh/nvm#installing-and-updating


AWS SDK for JavaScript Developer Guide for SDK v2

const client = new DynamoDBClient({ 
    region: "us-west-2", 
    requestHandler: new NodeHttpHandler({ 
        httpsAgent: new https.Agent( 
            { 
                secureProtocol: 'TLSv1_2_method' 
            } 
        ) 
    })
});

Enforcing TLS 1.3

To enforce that TLS 1.3 is the minimum allowable version, specify the --tls-min-v1.3
argument when running your script, as shown in the following example.

node --tls-min-v1.3 yourScript.js

To specify the minimum allowable TLS version for a specific request in your JavaScript code, use 
the httpOptions parameter to specify the protocol, as shown in the following example.

const https = require("https");
const {NodeHttpHandler} = require("@aws-sdk/node-http-handler");
const {DynamoDBClient} = require("@aws-sdk/client-dynamodb");

const client = new DynamoDBClient({ 
    region: "us-west-2", 
    requestHandler: new NodeHttpHandler({ 
        httpsAgent: new https.Agent( 
            { 
                secureProtocol: 'TLSv1_3_method' 
            } 
        ) 
    })
});

Verify and enforce TLS in a browser script

When you use the SDK for JavaScript in a browser script, browser settings control the version of 
TLS that is used. The version of TLS used by the browser cannot be discovered or set by script and 

Verify and enforce TLS in a browser script 357



AWS SDK for JavaScript Developer Guide for SDK v2

must be configured by the user. To verify and enforce the version of TLS used in a browser script, 
refer to the instructions for your specific browser.

Microsoft Internet Explorer

1. Open Internet Explorer.

2. From the menu bar, choose Tools - Internet Options - Advanced tab.

3. Scroll down to Security category, manually check the option box for Use TLS 1.2.

4. Click OK.

5. Close your browser and restart Internet Explorer.

Microsoft Edge

1. In the Windows menu search box, type Internet options.

2. Under Best match, click Internet Options.

3. In the Internet Properties window, on the Advanced tab, scroll down to the Security
section.

4. Check the User TLS 1.2 checkbox.

5. Click OK.

Google Chrome

1. Open Google Chrome.

2. Click Alt F and select Settings.

3. Scroll down and select Show advanced settings....

4. Scroll down to the System section and click on Open proxy settings....

5. Select the Advanced tab.

6. Scroll down to Security category, manually check the option box for Use TLS 1.2.

7. Click OK.

8. Close your browser and restart Google Chrome.

Mozilla Firefox

1. Open Firefox.

Verify and enforce TLS in a browser script 358



AWS SDK for JavaScript Developer Guide for SDK v2

2. In the address bar, type about:config and press Enter.

3. In the Search field, enter tls. Find and double-click the entry for security.tls.version.min.

4. Set the integer value to 3 to force protocol of TLS 1.2 to be the default.

5. Click OK.

6. Close your browser and restart Mozilla Firefox.

Apple Safari

There are no options for enabling SSL protocols. If you are using Safari version 7 or greater, TLS 
1.2 is automatically enabled.

Verify and enforce TLS in a browser script 359



AWS SDK for JavaScript Developer Guide for SDK v2

Additional Resources

The following links provide additional resources you can use with the AWS SDK for JavaScript.

AWS SDKs and Tools Reference Guide

The AWS SDKs and Tools Reference Guide also contains settings, features, and other foundational 
concepts common among many of the AWS SDKs.

JavaScript SDK Forum

You can find questions and discussions on matters of interest to users of the SDK for JavaScript in 
the JavaScript SDK Forum.

JavaScript SDK and Developer Guide on GitHub

There are several repositories on GitHub for the SDK for JavaScript.

• The current SDK for JavaScript is available in the SDK repo.

• The SDK for JavaScript Developer Guide (this document) is available in markdown format in its 
own documentation repo.

• Some of the sample code that is included in this guide is available in the SDK sample code repo.

JavaScript SDK on Gitter

You can also find questions and discussions about the SDK for JavaScript in the JavaScript SDK 
community on Gitter.

AWS SDKs and Tools Reference Guide 360

https://docs.aws.amazon.com/sdkref/latest/guide/
https://forums.aws.amazon.com/forum.jspa?forumID=148
https://github.com/aws/aws-sdk-js
https://github.com/awsdocs/aws-javascript-developer-guide-v2
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript
https://gitter.im/aws/aws-sdk-js
https://gitter.im/aws/aws-sdk-js


AWS SDK for JavaScript Developer Guide for SDK v2

Document History for AWS SDK for JavaScript

• SDK version: See JavaScript API Reference

• Latest major documentation update: March 31, 2022

Document History

The following table describes important changes in each release of the AWS SDK for JavaScript 
after May 2018. For notification about updates to this documentation, you can subscribe to an RSS 
feed.

Change Description Date

Enforcing a minimum version 
of TLS

Added information about TLS 
1.3.

March 31, 2022

Viewing Photos in an Amazon 
S3 Bucket from a Browser

Added an example for simply 
viewing photos in existing 
photo albums.

May 13, 2019

Setting Credentials in Node.js, 
new credential-loading 
choices

Added information about 
credentials that are loaded 
from the ECS credentials 
provider or a configured 
credential process.

April 25, 2019

Credentials using a Configure 
d Credential Process

Added information about 
credentials that are loaded 
from a configured credential 
process.

April 25, 2019

New Getting Started in a 
Browser Script

Getting Started in a Browser 
Script has been rewritten to 
simplify the example and 
to access the Amazon Polly 
service to send text and 
return synthesized speech you 

July 14, 2018

Document History 361

https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/amazon-sdk-javascript-guide-doc-history.rss
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/amazon-sdk-javascript-guide-doc-history.rss
https://docs.aws.amazon.com/sdk-for-javascript/latest/developer-guide/setting-credentials-node.html
https://docs.aws.amazon.com/sdk-for-javascript/latest/developer-guide/setting-credentials-node.html
https://docs.aws.amazon.com/sdk-for-javascript/latest/developer-guide/setting-credentials-node.html
https://docs.aws.amazon.com/sdk-for-javascript/latest/developer-guide/loading-node-credentials-configured-credential-process.html
https://docs.aws.amazon.com/sdk-for-javascript/latest/developer-guide/loading-node-credentials-configured-credential-process.html
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/getting-started-browser.html
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/getting-started-browser.html


AWS SDK for JavaScript Developer Guide for SDK v2

can play in the browser. See
Getting Started in Browser 
Script for the new content.

New Amazon SNS Code 
Samples

Four new Node.js code 
samples for working with 
Amazon SNS have been 
added. See Amazon SNS 
Examples for the sample 
code.

June 29, 2018

New Getting Started in 
Node.js

Getting Started in Node.js 
has been rewritten to use 
updated sample code and 
to provide greater detail in 
how to create the package.j 
son  file as well as the 
Node.js code itself. See
Getting Started in Node.js for 
the new content.

June 4, 2018

Earlier Updates

The following table describes important changes in each release of the AWS SDK for JavaScript 
before June 2018.

Change Description Date

New AWS Elemental 
MediaConvert code samples

Three new Node.js code 
samples for working with 
AWS Elemental MediaConv 
ert have been added. See
AWS Elemental MediaConv 
ert Examples for the sample 
code.

May 21, 2018

Earlier Updates 362

https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/getting-started-browser.html
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/getting-started-browser.html
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/sns-examples.html
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/sns-examples.html
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/sns-examples.html
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/sns-examples.html
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/getting-started-nodejs.html
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/getting-started-nodejs.html
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/getting-started-nodejs.html


AWS SDK for JavaScript Developer Guide for SDK v2

Change Description Date

New Edit on GitHub Button The header of every topic 
now provides a button that 
takes you to the markdown 
version of same topic on 
GitHub so you can provide 
edits to improve the accuracy 
and completeness of the 
guide.

February 21, 2018

New Topic on Custom 
Endpoints

Information has been added 
on the format and use of 
custom endpoints for making 
API calls. See Specifying 
Custom Endpoints.

February 20, 2018

SDK for JavaScript Developer 
Guide on GitHub

The SDK for JavaScript 
Developer Guide is available 
in markdown format in its 
own documentation repo. You 
can post issues you would 
like the guide to address 
or submit pull requests to 
submit proposed changes.

February 16, 2018

New Amazon DynamoDB 
code sample

A new Node.js code sample 
for updating a DynamoDB 
table using the Document 
Client has been added. 
See Using the DynamoDB 
Document Client for the 
sample code.

February 14, 2018

Earlier Updates 363

https://github.com/awsdocs/aws-javascript-developer-guide-v2


AWS SDK for JavaScript Developer Guide for SDK v2

Change Description Date

New Topic on AWS Cloud9 A topic describing how to use 
AWS Cloud9 to develop and 
debug browser and Node.js 
code has been added. See
Using AWS Cloud9 with the 
AWS SDK for JavaScript.

February 5, 2018

New Topic on SDK Logging A topic describing how to 
log API calls made with the 
SDK for JavaScript has been 
added, including informati 
on about using a third-party 
logger. See Logging AWS SDK 
for JavaScript Calls.

February 5, 2018

Updated Topic on Region 
Setting

The topic describing how 
to set the Region used with 
the SDK has been updated 
and expanded, including 
information about the order 
of precedence for setting the 
Region. See Setting the AWS 
Region.

December 12, 2017

New Amazon SES Code 
Examples

The section with SDK code 
examples has been updated 
to include five new examples 
for working with Amazon SES. 
For more information about 
these code examples, see
Amazon Simple Email Service 
Examples.

November 9, 2017

Earlier Updates 364



AWS SDK for JavaScript Developer Guide for SDK v2

Change Description Date

Usability Improvements Based on recent usability 
testing, a number of changes 
have been made to improve 
documentation usability.

• Code samples are more 
clearly identified as 
targeted either for browser 
or Node.js execution.

• TOC links no longer jump 
immediately to other web 
content, including the API 
Reference.

• Includes more linking in 
Getting Started section to 
details on obtaining AWS 
credentials.

• Provides more informati 
on about common Node.js 
features needed to use the 
SDK. For more information, 
see Node.js Considerations.

August 9, 2017

New DynamoDB Code 
Examples

The section with SDK code 
examples has been updated 
to re-write the two previous 
examples as well as add three 
brand new examples for 
working with DynamoDB. For 
more information about these 
code examples, see Amazon 
DynamoDB Examples.

June 21, 2017

Earlier Updates 365



AWS SDK for JavaScript Developer Guide for SDK v2

Change Description Date

New IAM Code Examples The section with SDK code 
examples has been updated 
to include five new examples 
for working with IAM. For 
more information about these 
code examples, see AWS IAM 
Examples.

December 23, 2016

New CloudWatch and Amazon 
SQS Code Examples

The section with SDK code 
examples has been updated 
to include new examples for 
working with CloudWatch 
and with Amazon SQS. For 
more information about these 
code examples, see Amazon 
CloudWatch Examples and
Amazon SQS Examples.

December 20, 2016

New Amazon EC2 Code 
Examples

The section with SDK code 
examples has been updated 
to include five new examples 
for working with Amazon EC2. 
For more information about 
these code examples, see
Amazon EC2 Examples.

December 15, 2016

List of supported browsers 
made more visible

The list of browsers 
supported by the SDK 
for JavaScript, which was 
previously found in the topic 
on Prerequisites, has been 
given its own topic to make 
it more visible in the table of 
contents.

November 16, 2016

Earlier Updates 366



AWS SDK for JavaScript Developer Guide for SDK v2

Change Description Date

Initial publication of the new 
Developer Guide

The previous Developer 
Guide is now deprecated. 
The new Developer Guide 
has been reorganized to 
make information easier to 
find. When either Node.js or 
browser JavaScript scenarios 
present special considera 
tions, those are identified 
as appropriate. The guide 
also provides additional code 
examples that are better 
organized to make them 
easier and faster to find.

October 28, 2016

Earlier Updates 367


	AWS SDK for JavaScript
	Table of Contents
	
	What Is the AWS SDK for JavaScript?
	Maintenance and support for SDK major versions
	Using the SDK with Node.js
	Using the SDK with AWS Cloud9
	Using the SDK with AWS Amplify
	Using the SDK with Web Browsers
	Common Use Cases
	About the Examples


	Getting Started with the AWS SDK for JavaScript
	Getting Started in a Browser Script
	The Scenario
	Step 1: Create an Amazon Cognito Identity Pool
	Step 2: Add a Policy to the Created IAM Role
	Step 3: Create the HTML Page
	Step 4: Write the Browser Script
	Step 5: Run the Sample
	Full Sample
	Possible Enhancements

	Getting Started in Node.js
	The Scenario
	Prerequisite Tasks
	Step 1: Install the SDK and Dependencies
	Step 2: Configure Your Credentials
	Step 3: Create the Package JSON for the Project
	Step 4: Write the Node.js Code
	Step 5: Run the Sample


	Using AWS Cloud9 with the AWS SDK for JavaScript
	Step 1: Set up Your AWS Account to Use AWS Cloud9
	Step 2: Set up Your AWS Cloud9 Development Environment
	Step 3: Set up the SDK for JavaScript
	To set up the SDK for JavaScript for Node.js
	To set up the SDK for JavaScript in the browser

	Step 4: Download Example Code
	Step 5: Run and Debug Example Code

	Setting Up the SDK for JavaScript
	Prerequisites
	Setting Up an AWS Node.js Environment
	Web Browsers Supported

	Installing the SDK for JavaScript
	Installing Using Bower

	Loading the SDK for JavaScript
	Upgrading the SDK for JavaScript from Version 1
	Automatic Conversion of Base64 and Timestamp Types on Input/Output
	Moved response.data.RequestId to response.requestId
	Exposed Wrapper Elements
	Dropped Client Properties


	Configuring the SDK for JavaScript
	Using the Global Configuration Object
	Setting Global Configuration
	Global Configuration Examples

	Setting Configuration Per Service
	Immutable Configuration Data

	Setting the AWS Region
	In a Client Class Constructor
	Using the Global Configuration Object
	Using an Environment Variable
	Using a Shared Config File
	Order of Precedence for Setting the Region

	Specifying Custom Endpoints
	Endpoint String Format
	Endpoints for the ap-northeast-3 Region
	Endpoints for MediaConvert

	SDK authentication with AWS
	Start an AWS access portal session
	More authentication information

	Setting Credentials
	Best Practices for Credentials
	Setting Credentials in Node.js
	Loading Credentials in Node.js from IAM roles for Amazon EC2
	Loading Credentials for a Node.js Lambda Function
	Loading Credentials in Node.js from the Shared Credentials File
	Loading Credentials in Node.js from Environment Variables
	Loading Credentials in Node.js from a JSON File
	Loading Credentials in Node.js using a Configured Credential Process

	Setting Credentials in a Web Browser
	Using Amazon Cognito Identity to Authenticate Users
	Configuring the Amazon Cognito Identity Credentials Object
	Switching Unauthenticated Users to Authenticated Users
	Initially Unauthenticated User
	Switch to Authenticated User


	Using Web Federated Identity to Authenticate Users
	Step 1: Registering with Identity Providers
	Step 2: Creating an IAM Role for an Identity Provider
	Step 3: Obtaining a Provider Access Token After Login
	Step 4: Obtaining Temporary Credentials

	Web Federated Identity Examples
	Login with Amazon Example
	Facebook Login Example
	Google+ Sign-in Example



	Locking API Versions
	Getting API Versions

	Node.js Considerations
	Using Built-In Node.js Modules
	Using NPM Packages
	Configuring maxSockets in Node.js
	Reusing Connections with Keep-Alive in Node.js
	Configuring Proxies for Node.js
	Registering Certificate Bundles in Node.js

	Browser Script Considerations
	Building the SDK for Browsers
	Using the SDK Builder to Build the SDK for JavaScript
	Using the CLI to Build the SDK for JavaScript
	Building from the Command Line
	Minifying Build Output

	Building Specific Services and API Versions
	Building All Services
	Building Specific Services

	Building the SDK as a Dependency with Browserify

	Cross-Origin Resource Sharing (CORS)
	How CORS Works
	Is CORS Configuration Required
	Configuring CORS for an Amazon S3 Bucket
	CORS Configuration Example


	Bundling Applications with Webpack
	Installing Webpack
	Configuring Webpack
	Running Webpack
	Using the Webpack Bundle
	Importing Individual Services
	Bundling for Node.js


	Working with Services in the SDK for JavaScript
	Creating and Calling Service Objects
	Requiring Individual Services
	Creating Service Objects
	Locking the API Version of a Service Object
	Specifying Service Object Parameters

	Logging AWS SDK for JavaScript Calls
	Using a Third-Party Logger

	Calling Services Asychronously
	Managing Asychronous Calls
	Using an Anonymous Callback Function
	Accessing the Request and Response Objects

	Using a Request Object Event Listener
	Chaining Multiple Callbacks
	Request Object Completion Events
	The success Event
	The error Event
	The complete Event

	Request Object HTTP Events
	The httpHeaders Event
	The httpData Event
	The httpUploadProgress and httpDownloadProgress Events
	The httpError Event
	The httpDone Event


	Using async/await
	Using JavaScript Promises
	Coordinating Multiple Promises
	Browser and Node.js Support for Promises
	Using Other Promise Implementations


	Using the Response Object
	Accessing Data Returned in the Response Object
	Paging Through Returned Data
	Accessing Error Information from a Response Object
	Accessing the Originating Request Object

	Working with JSON
	JSON as Service Object Parameters
	Returning Data as JSON


	SDK for JavaScript Code Examples
	Amazon CloudWatch Examples
	Creating Alarms in Amazon CloudWatch
	The Scenario
	Prerequisite Tasks
	Describing Alarms
	Creating an Alarm for a CloudWatch Metric
	Deleting an Alarm

	Using Alarm Actions in Amazon CloudWatch
	The Scenario
	Prerequisite Tasks
	
	Creating and Enabling Actions on an Alarm
	Disabling Actions on an Alarm

	Getting Metrics from Amazon CloudWatch
	The Scenario
	Prerequisite Tasks
	Listing Metrics
	Submitting Custom Metrics

	Sending Events to Amazon CloudWatch Events
	The Scenario
	Prerequisite Tasks
	Creating a Scheduled Rule
	Adding a AWS Lambda Function Target
	Sending Events

	Using Subscription Filters in Amazon CloudWatch Logs
	The Scenario
	Prerequisite Tasks
	Describing Existing Subscription Filters
	Creating a Subscription Filter
	Deleting a Subscription Filter


	Amazon DynamoDB Examples
	Creating and Using Tables in DynamoDB
	The Scenario
	Prerequisite Tasks
	Creating a Table
	Listing Your Tables
	Describing a Table
	Deleting a Table

	Reading and Writing A Single Item in DynamoDB
	The Scenario
	Prerequisite Tasks
	Writing an Item
	Getting an Item
	Deleting an Item

	Reading and Writing Items in Batch in DynamoDB
	The Scenario
	Prerequisite Tasks
	Reading Items in Batch
	Writing Items in Batch

	Querying and Scanning a DynamoDB Table
	The Scenario
	Prerequisite Tasks
	Querying a Table
	Scanning a Table

	Using the DynamoDB Document Client
	The Scenario
	Prerequisite Tasks
	Getting an Item from a Table
	Putting an Item in a Table
	Updating an Item in a Table
	Querying a Table
	Deleting an Item from a Table


	Amazon EC2 Examples
	Creating an Amazon EC2 Instance
	About the Example
	Prerequisite Tasks
	Creating and Tagging an Instance

	Managing Amazon EC2 Instances
	The Scenario
	Prerequisite Tasks
	Describing Your Instances
	Managing Instance Monitoring
	Starting and Stopping Instances
	Rebooting Instances

	Working with Amazon EC2 Key Pairs
	The Scenario
	Prerequisite Tasks
	Describing Your Key Pairs
	Creating a Key Pair
	Deleting a Key Pair

	Using Regions and Availability Zones with Amazon EC2
	The Scenario
	Prerequisite Tasks
	Describing Regions and Availability Zones

	Working with Security Groups in Amazon EC2
	The Scenario
	Prerequisite Tasks
	Describing Your Security Groups
	Creating a Security Group and Rules
	Deleting a Security Group

	Using Elastic IP Addresses in Amazon EC2
	The Scenario
	Prerequisite Tasks
	Describing Elastic IP Addresses
	Allocating and Associating an Elastic IP Address with an Amazon EC2 Instance
	Releasing an Elastic IP Address


	AWS Elemental MediaConvert Examples
	Getting Your Region-Specific Endpoint for MediaConvert
	The Scenario
	Prerequisite Tasks
	Getting Your Endpoint URL

	Creating and Managing Transcoding Jobs in MediaConvert
	The Scenario
	Prerequisite Tasks
	Configuring the SDK
	Defining a Simple Transcoding Job
	Creating a Transcoding Job
	Canceling a Transcoding Job
	Listing Recent Transcoding Jobs

	Using Job Templates in MediaConvert
	The Scenario
	Prerequisite Tasks
	Creating a Job Template
	Creating a Transcoding Job from a Job Template
	Listing Your Job Templates
	Deleting a Job Template


	Amazon S3 Glacier Examples
	Creating a S3 Glacier Vault
	Prerequisite Tasks
	Create the Vault

	Uploading an Archive to S3 Glacier
	Prerequisite Tasks
	Upload the Archive

	Doing a Multipart Upload to S3 Glacier

	AWS IAM Examples
	Managing IAM Users
	The Scenario
	Prerequisite Tasks
	Creating a User
	Listing Users in Your Account
	Updating a User's Name
	Deleting a User

	Working with IAM Policies
	The Scenario
	Prerequisite Tasks
	Creating an IAM Policy
	Getting an IAM Policy
	Attaching a Managed Role Policy
	Detaching a Managed Role Policy

	Managing IAM Access Keys
	The Scenario
	Prerequisite Tasks
	Creating Access Keys for a User
	Listing a User's Access Keys
	Getting the Last Use for Access Keys
	Updating Access Key Status
	Deleting Access Keys

	Working with IAM Server Certificates
	The Scenario
	Prerequisite Tasks
	Listing Your Server Certificates
	Getting a Server Certificate
	Updating a Server Certificate
	Deleting a Server Certificate

	Managing IAM Account Aliases
	The Scenario
	Prerequisite Tasks
	Creating an Account Alias
	Listing Account Aliases
	Deleting an Account Alias


	Amazon Kinesis Example
	Capturing Web Page Scroll Progress with Amazon Kinesis
	The Scenario
	Prerequisite Tasks
	The Blog Page
	Configuring the SDK
	Creating Scroll Records
	Submitting Records to Kinesis
	Capturing Web Page Scroll Progress Code


	Amazon S3 Examples
	Amazon S3 Browser Examples
	Viewing Photos in an Amazon S3 Bucket from a Browser
	The Scenario
	Prerequisite Tasks
	Create the Bucket
	Create an Identity Pool
	Configure Role Permissions
	Configure CORS
	Create Albums and Upload Photos

	Defining the Webpage
	Configuring the SDK
	Listing Albums in the Bucket
	Viewing an Album
	Viewing Photos in an Amazon S3 Bucket: Full Code

	Uploading Photos to Amazon S3 from a Browser
	The Scenario
	Prerequisite Tasks
	Configuring CORS
	The Web Page
	Configuring the SDK
	Listing Albums in the Bucket
	Creating an Album in the Bucket
	Viewing an Album
	Adding Photos to an Album
	Deleting a Photo
	Deleting an Album
	Uploading Photos to Amazon S3: Full Code


	Amazon S3 Node.js Examples
	Creating and Using Amazon S3 Buckets
	The Scenario
	Prerequisite Tasks
	Configuring the SDK
	Displaying a List of Amazon S3 Buckets
	Creating an Amazon S3 Bucket
	Uploading a File to an Amazon S3 Bucket
	Listing Objects in an Amazon S3 Bucket
	Deleting an Amazon S3 Bucket

	Configuring Amazon S3 Buckets
	The Scenario
	Prerequisite Tasks
	Configuring the SDK
	Retrieving a Bucket CORS Configuration
	Setting a Bucket CORS Configuration

	Managing Amazon S3 Bucket Access Permissions
	The Scenario
	Prerequisite Tasks
	Configuring the SDK
	Retrieving the Current Bucket Access Control List

	Working with Amazon S3 Bucket Policies
	The Scenario
	Prerequisite Tasks
	Configuring the SDK
	Retrieving the Current Bucket Policy
	Setting a Simple Bucket Policy
	Deleting a Bucket Policy

	Using an Amazon S3 Bucket as a Static Web Host
	The Scenario
	Prerequisite Tasks
	Configuring the SDK
	Retrieving the Current Bucket Website Configuration
	Setting a Bucket Website Configuration
	Deleting a Bucket Website Configuration



	Amazon Simple Email Service Examples
	Managing Amazon SES Identities
	The Scenario
	Prerequisite Tasks
	Configuring the SDK
	Listing Your Identities
	Verifying an Email Address Identity
	Verifying a Domain Identity
	Deleting Identities

	Working with Email Templates in Amazon SES
	The Scenario
	Prerequisite Tasks
	Listing Your Email Templates
	Getting an Email Template
	Creating an Email Template
	Updating an Email Template
	Deleting an Email Template

	Sending Email Using Amazon SES
	The Scenario
	Prerequisite Tasks
	Email Message Sending Requirements
	Sending an Email
	Sending an Email Using a Template
	Sending Bulk Email Using a Template

	Using IP Address Filters for Email Receipt in Amazon SES
	The Scenario
	Prerequisite Tasks
	Configuring the SDK
	Creating an IP Address Filter
	Listing Your IP Address Filters
	Deleting an IP Address Filter

	Using Receipt Rules in Amazon SES
	The Scenario
	Prerequisite Tasks
	Creating an Amazon S3 Receipt Rule
	Deleting a Receipt Rule
	Creating a Receipt Rule Set
	Deleting a Receipt Rule Set


	Amazon Simple Notification Service Examples
	Managing Topics in Amazon SNS
	The Scenario
	Prerequisite Tasks
	Creating a Topic
	Listing Your Topics
	Deleting a Topic
	Getting Topic Attributes
	Setting Topic Attributes

	Publishing Messages in Amazon SNS
	The Scenario
	Prerequisite Tasks
	Publishing a Message to an Amazon SNS Topic

	Managing Subscriptions in Amazon SNS
	The Scenario
	Prerequisite Tasks
	Listing Subscriptions to a Topic
	Subscribing an Email Address to a Topic
	Subscribing an Application Endpoint to a Topic
	Subscribing a Lambda Function to a Topic
	Unsubscribing from a Topic

	Sending SMS Messages with Amazon SNS
	The Scenario
	Prerequisite Tasks
	Getting SMS Attributes
	Setting SMS Attributes
	Checking If a Phone Number Has Opted Out
	Listing Opted-Out Phone Numbers
	Publishing an SMS Message


	Amazon SQS Examples
	Using Queues in Amazon SQS
	About the Example
	Prerequisite Tasks
	Listing Your Queues
	Creating a Queue
	Getting the URL for a Queue
	Deleting a Queue

	Sending and Receiving Messages in Amazon SQS
	The Scenario
	Prerequisite Tasks
	Sending a Message to a Queue
	Receiving and Deleting Messages from a Queue

	Managing Visibility Timeout in Amazon SQS
	The Scenario
	Prerequisite Tasks
	Changing the Visibility Timeout

	Enabling Long Polling in Amazon SQS
	The Scenario
	Prerequisite Tasks
	Enabling Long Polling When Creating a Queue
	Enabling Long Polling on an Existing Queue
	Enabling Long Polling on Message Receipt

	Using Dead Letter Queues in Amazon SQS
	The Scenario
	Prerequisite Tasks
	Configuring Source Queues



	Tutorials
	Tutorial: Setting Up Node.js on an Amazon EC2 Instance
	Prerequisites
	Procedure
	Creating an Amazon Machine Image
	Related Resources


	JavaScript API Reference
	SDK Changelog on GitHub

	Security for this AWS Product or Service
	Data protection in this AWS product or service
	Identity and Access Management
	Audience
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How AWS services work with IAM
	Troubleshooting AWS identity and access
	I am not authorized to perform an action in AWS
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my AWS resources


	Compliance Validation for this AWS Product or Service
	Resilience for this AWS Product or Service
	Infrastructure Security for this AWS Product or Service
	Enforcing a minimum version of TLS
	Verify and enforce TLS in Node.js
	Verify the version of OpenSSL and TLS
	Enforce a minimum version of TLS

	Verify and enforce TLS in a browser script


	Additional Resources
	AWS SDKs and Tools Reference Guide
	JavaScript SDK Forum
	JavaScript SDK and Developer Guide on GitHub
	JavaScript SDK on Gitter

	Document History for AWS SDK for JavaScript
	Document History
	Earlier Updates


